• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and Functional Analysis of Grapefruit Flavonol-Specific-3-O-GT Mutant P145T

Kandel, Sangam, Mr 01 December 2016 (has links)
This research is focused on the study of the effect of mutating proline 145 to threonine on the substrate and regiospecificity of flavonol specific 3-O-glucosyltransferase (Cp3GT). While the mutant P145T enzyme did not glucosylate anthocyanidins, it did glucosylate flavanones and flavones in addition to retaining activity with flavonols. HPLC was used for product identification and showed mutant P145T glucosylated naringenin at the 7-OH position forming naringenin-7-O-glucoside and flavonols at the 3-OH position. Homology modeling and docking was done to predict the acceptor substrate recognition pattern and models were validated by experimental results. In other related work, a thrombin cleavage site was inserted into wild type Cp3GT and recombinant P145T enzyme between the enzyme and the C-myc tags in order to be able to cleave off tags. This provides the tool needed for future efforts to crystallize these proteins for structural determination.
2

Crystallization of a Flavonol-Specific 3-O-Glucosyltrasnferase found in Citrus paradisi

Birchfield, Aaron, McIntosh, Cecelia A. 12 April 2017 (has links)
Citrus and other fruits produce secondary metabolites that are synthesized, regulated, and modified in part by a class of enzymes called glycosyltransferases. This class of enzymes is of substantial interest to this lab due to their unique structural and functional properties. Glycosides of flavonoids produced by glycosyltransferases have emerged in recent years as a critical part of plant metabolism, thus impacting every aspect of their growth, cultivation, production, and utilization. One such glycosyltransferase, found in Duncan Grapefruits (Citrus paradisi), was previously identified, recombinantly expressed, and shown through biochemical characterization to exclusively glycosylate the flavonol class of flavonoids. The structural basis that accounts for a glycosyltransferase's selectivity has been determined by protein crystallization in other labs, yet no structural basis currently exists for the specificity exhibited by this flavonol-specific glycosyltransferase. Currently, the WT enzyme and two mutants were expressed in E. coli, where they underwent site-directed mutagenesis to insert thrombin cleavage tags for removal of protein purification vectors, with the goal of transforming into yeast for adequate protein production. Subsequent purification and crystallization screens will allow for formation and acquisition of glycosyltransferase crystals, whose x-ray diffraction patterns will be decoded, thus revealing the enzyme's complete structure. We hypothesize that obtaining a crystal structure for this enzyme will illuminate the structural basis of its specificity. Additionally, we hypothesize that a thrombin- cleavage gene vector inserted for removal of purification tags will have no impact on enzyme activity or specificity.

Page generated in 0.0636 seconds