• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 3
  • 1
  • Tagged with
  • 24
  • 14
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Rôle de la protéine phosphatase PPM1A dans l'homéostasie hépatique du glucose et des lipides

Ouellet, Lai-Frédéric 12 1900 (has links)
L’insuline est une hormone essentielle qui induit des réponses complexes dans l’organisme pour maintenir l’homéostasie du glucose et des lipides. La résistance à son action est un phénomène pathologique observé dans un large éventail de situations, allant de l’obésité et du syndrome métabolique à la stéatose hépatique et au diabète de type 2, qui aboutissent au développement de l’athérosclérose et de la mortalité. Des avancées remarquables ont été réalisées dans notre compréhension des mécanismes moléculaires responsables du développement de la résistance à l’action de l’insuline. En particulier, l’induction d’un stress cellulaire par des taux élevés d’acides gras libres (AGL) et des cytokines, via l’activation des protéines Ser/Thr kinases, qui augmente la phosphorylation sur des résidus sérine, des molécules critiques impliquées dans la signalisation insulinique (p. ex. IR, IRS et p85) et conduit à la diminution de la réponse cellulaire à l’insuline. Cependant, la plupart des chercheurs ont limité leur travail dans l’investigation du rôle des protéines kinases susceptibles de modifier la réponse cellulaire à l’insuline. Donc, peu de données sont disponibles sur le rôle des Protéines Ser/Thr phosphatases (PS/TPs), même si il est bien établi que la phosphorylation de ces protéines est étroitement régulée par un équilibre entre les activités antagonistes des Ser/Thr kinases et des PS/TPs. Parmi les PS/TPS, PPM1A (également connu sous le nom PP2Cα) est une phosphatase particulièrement intéressante puisqu’il a été suggéré qu’elle pourrait jouer un rôle dans la régulation du métabolisme lipidique et du stress cellulaire. Ainsi, en se basant sur des résultats préliminaires de notre laboratoire et des données de la littérature, nous avons émis l’hypothèse selon laquelle PPM1A pourrait améliorer la sensibilité à l’insuline en diminuant l’activité des protéines kinases qui seraient activées par le stress cellulaire induit par l’augmentation des AGL. Ces effets pourraient finalement améliorer le métabolisme glucidique et lipidique dans l’hépatocyte. Ainsi, pour révéler le rôle physiologique de PPM1A à l’échelle d’un animal entier, nous avons généré un modèle animal qui la surexprime spécifiquement dans le foie. Nous décrivons ici notre travail afin de générer ce modèle animal ainsi que les premières analyses pour caractériser le phénotype de celui-ci. Tout d’abord, nous avons remarqué que la surexpression de PPM1A chez les souris C57BL/6J n’a pas d’effets sur le gain de poids sur une longue période. Deuxièmement, nous avons observé que PPM1A a peu d’effets sur l’homéostasie du glucose. Par contre, nous avons montré que sa surexpression a des effets significatifs sur l’homéostasie du glycogène et des triglycérides. En effet, nous avons observé que le foie des souris transgéniques contient moins de glycogène et de triglycérides que le foie de celles de type sauvage. De plus, nos résultats suggèrent que les effets de la surexpression de PPM1A pourraient refléter son impact sur la synthèse et la sécrétion des lipides hépatiques puisque nous avons observé que sa surexpression conduit à l’augmentation la triglycéridémie chez les souris transgéniques. En conclusion, nos résultats prouvent l’importance de PPM1A comme modulateur de l’homéostasie hépatique du glucose et des lipides. Des analyses supplémentaires restent cependant nécessaires pour confirmer ceux-ci et éclaircir l’impact moléculaire de PPM1A et surtout pour identifier ses substrats. / Insulin is a key hormone that elicits complex responses in the body to maintain glucose and lipid homeostasis. Impaired sensitivity to insulin is present throughout a spectrum of inter-related disorders ranging from obesity and metabolic syndrome to hepatic steatosis and type 2 diabetes, which promotes atherogenesis and mortality. Remarkable strides have been achieved in the molecular mechanisms responsible for the development of insulin resistance that has been associated with a chronic inflammatory state and an activation of cellular stress responses. In particular, the activation of cellular stress by elevated levels of free fatty acids (FFA) and cytokines, via upstream protein Ser/Thr kinases, increase the serine phosphorylation of critical molecules involved in insulin signaling pathway (e.g. IR, IRS and p85) and leads to decreased insulin response. However, most of the investigators have limited their works to stress-activated kinases capable of altering the cellular insulin responsiveness. Conversely, limited data are available on upstream Protein Ser/Thr phosphatases (PS/TPs), even if it is well established that the activity of stress-activated kinases is tightly regulated by a delicate balance between the opposing activities of both Ser/Thr kinases and PS/TPs. Among the PS/TPs associated with insulin resistance conditions, PPM1A (also known as PP2Cα) is of particular interest in the regulation of lipid metabolism and cellular stress. Based on our recent findings and preliminary data, we postulate that PPM1A plays a significant role in insulin resistance via dephosphorylation and lessening of FFA-activated stress kinases, mainly in the liver, an important organ in glucose and lipid metabolism. More specifically, we hypothesize that increasing PPM1A activity might improve the insulin responsiveness by down regulating the activity of stress-activated kinases and by improving lipid metabolism in the hepatocyte. Thus, to reveal the physiological role of PPM1A in whole animal, we generated an animal model that overexpresses PPM1A specifically in the liver. In the present research report, we describe our work to generate this animal model as well as the initial analyses to characterize the phenotype of these mice. Accordingly, we first noticed that overexpression of PPM1A in C57BL/6J mice has no effects on weight gain over a long period. Secondly, we observed that PPM1A has subtle effects on glucose homeostasis. However and more importantly, we showed that overexpression of PPM1A has a significant effect on both glycogen and triglycerides homeostasis. Indeed, we observed that the liver of PPM1A transgenic mice had less glycogen and triglycerides than their littermates’ wild type mice. Our results suggest that these effects might reflect the impact of PPM1A on lipids synthesis and secretion since we observed that overexpression of PPM1A leads to increase the triglyceridemia in the transgenic mice. En conclusion, our results pinpoint PPM1A as an important modulator of hepatic glucose and lipid metabolism. However, further analyses are needed to confirm these results, to decipher the molecular impact of PPM1A and particularity to identify its substrates.
22

Sélection des substrats au cours d'un exercice de marche à basse intensité avant et après une randonnée hivernale de 20 jours sur le lac Winnipeg

Abdellaoui, Mohamed January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
23

Etudes des mécanismes moléculaires impliqués dans les variations de qualité des viandes de volailles / Study the molecular mechanisms involved in meat quality variation in poultry

Jlali, Maamer 12 July 2012 (has links)
Plusieurs acteurs moléculaires impliqués dans les variations de qualité de la viande ont été récemment mis en évidence chez le poulet. Ma thèse a pour objectif d’approfondir l’étude de leur régulation en étudiant l’impact de facteurs alimentaires en interaction avec l’origine génétique des animaux. Il s’est articulé autour de deux thématiques qui impliquent des acteurs moléculaires et des critères de qualité de viande indépendants : le rôle de l’AMPK (AMP-activated protein kinase) dans le contrôle du turnover du glycogène musculaire et des caractères qui en dépendent (pH, rétention d’eau, couleur) et l’implication de BCMO1 (β, β-carotene-15,15’-monooxygenase) dans les variations de teneurs en pigments caroténoïdes et de coloration. Nos résultats soulignent dans les deux cas la possibilité de moduler les caractères de qualité via l’alimentation avec des réponses qui dépendent des caractéristiques génétiques des animaux. Nos travaux ont aussi permis d’améliorer la compréhension de la régulation des biomarqueurs étudiés par les nutriments et la génétique et contribueront à terme à la mise en place de nouvelles stratégies de production permettant d’optimiser la qualité du poulet de chair en réponse aux attentes de la filière et des consommateurs. / Several molecular mechanisms involved in the variations of poultry meat quality were recently identified in chickens. My thesis aims to further study their regulation by exploring the impact of dietary factors in interaction with the genetic origin of animals. It was structured around two themes that involve independent molecular mechanisms and meat quality criteria: the role of AMPK (AMP-activated protein kinase) in the control of muscle glycogen turnover and related meat traits (pH, water retention, color), and the involvement of BCMO1 (β, β-carotene-15, 15'-monooxygenase) in controlling levels of carotenoid pigments and yellow color. Our results emphasize in both cases the possibility of modulating quality traits through nutrition, with effects that depend on the genetic characteristics of animals. Our work has also improved the understanding of the regulation of studied biomarkers by genetics and nutrients. This should contribute to the development of new production strategies to optimize the quality of broilers in response to expectations of poultry producers and consumers.
24

Role of GSK-3 and T-bet in anti-tumor immunity

Cherukommu, Shirisha 03 1900 (has links)
Le facteur de transcription T-bet joue un rôle central dans la régulation de la différenciation des lymphocytes T. La protéine tyrosine kinase, la glycogène synthase kinase 3 (GSK-3), inhibe l'activation des lymphocytes T et contrôle l'expression de leurs récepteurs inhibiteurs PD-1 et LAG- 3. Bien que l'inhibition de GSK-3 puisse augmenter l'expression de T-bet, l'interrelation entre T-bet et GSK-3 dans l'immunité tumorale est inconnue. Dans cette étude, nous montrons que les souris knock-out T-bet (Tbet - / -) sont compromises dans leur capacité à contrôler la croissance des cellules tumorales du mélanome B16. Cependant, l'injection d'une petite molécule inhibitrice (SMI) de GSK-3 inverse cette condition compromise entraînant le contrôle de la croissance tumorale similaire à celle observée chez les souris de type sauvage. Un examen de Tbet - / - a montré une perte de cellules dendritiques (DC) et de cellules leucocytes polymorphonucléaires (PMN) potentiellement suppressives et de lymphocytes tumoraux T (TILs) CD4 + accompagnée d'une augmentation de cellules T CD8 +. L'analyse viSNE (avancé tSNE) a en outre montré une réduction de la population effectrice expérimentée à l'antigène dans les TILs CD8 + chez Tbet -/-. Cette population est marquée par la réduction de CD44. L'inhibition de GSK-3 n'a montré aucun effet sur la perte de DC, TILs CD4 +, PMN et les TILs CD8 + ainsi que l’expression de Granzyme B (GZMB) sur les cellules T CD8 +. La seule exception était une augmentation mineure néanmoins statistiquement significative du facteur de transcription Eomesdermin (Eomes) dans les TILs CD8 +. L'étude démontre un effet compensatoire inattendu de l'inhibition de GSK-3 sur la perte de T-bet. Il reste à élucider la nature complète du parcours de cette compensation. / The transcription factor T-bet plays a central role in regulating T-cell differentiation, while the protein tyrosine kinase, glycogen synthase kinase 3 (GSK-3) inhibits T-cell activation and controls the expression of inhibitory receptors PD-1 and LAG-3 on T-cells. Although GSK-3 inhibition can increase T-bet expression, the inter-relationship between T-bet and GSK-3 in tumor immunity is unknown. In this study, we show that T-bet knock-out (Tbet-/-) mice are compromised in their ability to control the growth of the B16 melanoma tumor cells. However, the injection of a small molecule inhibitor (SMI) of GSK-3 reverses this compromised condition resulting in the control of tumor growth similar to that seen in wild type mice. An examination of Tbet-/- showed a loss of dendritic cells (DC) and potentially suppressive polymorphonuclear leucocytes (PMN) and CD4+ cell tumor infiltrating lymphocytes (TILs) accompanied by an increase in CD8+ cells. viSNE analysis (advanced tSNE- t-Distributed Stochastic Neighbor Embedding) further showed a reduction of antigen experienced effector marker CD44 in CD8+ TILs in Tbet-/-. GSK-3 inhibition showed no effect on the loss of DCs, CD4+ TILs or the presence of PMNs or CD8+ T-cells or the loss of Granzyme B (GZMB) on CD8+ cells. The one exception was a minor but statistically significant increase in the transcription factor Eomesodermin (Eomes) in CD8+ TILs. The study demonstrates an unexpected compensatory effect of GSK-3 inhibition on the loss of T-bet. The full nature of the pathway that accounts for this compensation remains to be elucidated.

Page generated in 0.0281 seconds