Spelling suggestions: "subject:"glyptemys insculpta"" "subject:"graptemys insculpta""
1 |
HABITAT USE AND MOVEMENTS OF BLANDING’S TURTLES (EMYDOIDEA BLANDINGII) AND WOOD TURTLES (GLYPTEMYS INSCULPTA) IN A SHARED LANDSCAPEElizabeth A Cubberley (12884906) 16 June 2022 (has links)
<p>Blanding’s Turtles (Emydoidea blandingii) and Wood Turtles (Glyptemys insculpta) face population declines range wide, largely because of degradation and loss of habitat in the landscapes they occupy. Studies of spatial ecology inform land managers of both the resource needs of animal populations and provide insight on site specific conservation priorities. I examined movements and habitat use of overlapping populations of Blanding’s Turtles and Wood Turtles at a site in northern Michigan. I used radio telemetry to locate turtles of each species over the course of two active seasons. I examined full active season and bi-weekly movement patterns and compared activity between the species and sexes of each using one-way analysis of covariance (ANCOVA) and repeated measures analysis of variance (RM ANOVA), respectively. Using multiple commonly used spatial metrics, including range length, 100% minimum convex polygons (MCP), 95% MCP, 50% MCP, and 95% kernel density estimation (KDE), I estimated seasonal activity ranges of turtles and examined site fidelity, making comparisons of species and sexes using two?way multivariate analysis of variance (MANOVA). Finally, I used Euclidean Distance Analysis to examine habitat use at Johnson’s 2nd and 3rd orders of selection, making comparisons at different levels using MANOVA. Movement analyses suggest that Blanding’s Turtles and Wood Turtles at this site travel similar distances over the active season and during different seasonal periods, though females of both species make slightly larger movements during the spring nesting season and male Wood Turtles move more than females in late summer. Activity ranges were individually variable, but comparable among species and sexes. Wood Turtles do appear to exhibit site fidelity at this site, occupying similarly sized and overlapping activity ranges year to year. Habitat selection was evident at the 2nd order for Wood Turtles, indicating favorable use of creek, mid?canopy, and high-canopy upland habitat types and avoidance of river habitat. Blanding’s Turtles also showed selection of habitat at the second order, with scrub-shrub and cut or burned areas ranking highest among available habitat types. Neither Wood Turtles nor Blanding’s Turtles showed evidence of habitat selection at the 3rd order, which may indicate an abundance of high?quality habitat available to these species at this site. Maintenance of corridors between high-use habitat areas, and mitigation of threats especially during times of greater movement may be advantageous to the conservation of Blanding’s Turtles and Wood Turtles at this site. </p>
|
2 |
IDENTIFYING THREATS TO BLANDING'S AND WOOD TURTLE RECRUITMENT IN NORTHERN MICHIGANBria Spalding (17123200) 10 October 2023 (has links)
<p dir="ltr">Blanding’s turtles (<i>Emydoidea blandingii</i>) and Wood Turtles (<i>Glyptemys insculpta</i>) are two threatened species that face various natural and anthropogenic threats to their populations. Many of these threats cause a decline in their recruitment, which can lead to drastic declines in populations. Females put themselves at-risk during periods of movement. My objectives were to identify portions of the season that females were most at-risk, potential nest predators, preferrable nest microhabitat characteristics, and movement of hatchlings. I studied movements in adult females of both species at a site in Northern Michigan using GPS and radiotelemetry. I compared these movements to the relative level of risk, or resistance, in the path they chose to take. I found both species had relatively similar resistance movements over the entire season. It seems that Blanding’s turtles tend to make more resistant movements during nesting, while Wood Turtles seem to be less resistant. Neither species seems to take the least resistance path available. I also conducted nesting surveys to determine nesting locations and selection characteristics at the site for both species. I did not find any characteristic that predicts nesting locations. The located nests were also recorded via trail cams to assess for predator activity. I recorded many species on trail camera review, but I did not note any predation behavior, all damage to nest cages were caused by humans and their vehicles. Lastly, I used radiotelemetry to analyze movements for hatchling turtles. Hatchlings of both species tended to make short daily movements until they reached a wetland. I also found hatchling’s succumbed to predation, desiccation, and road mortality. My data suggests further research needs to be conducted to expand our knowledge on recruitment threats. Nevertheless, I suggest active management for the threats we have noted. Nest cages seemed to be relatively successful at protecting nests, so I recommend continued nest cages to prevent or deter predators. Head-starting may be a strong strategy to help hatchlings reach a larger size before release. These larger hatchlings would also allow for larger transmitters and longer tracking times. This will help to prevent lost turtles and further our knowledge on hatchling success.</p>
|
3 |
Spatial Ecology, Population Structure, and Conservation of the Wood Turtle, Glyptemys Insculpta, in Central New EnglandJones, Michael T. 01 May 2009 (has links)
Abstract (Summary) Wood turtles ( Glyptemys insculpta ) are of conservation interest rangewide. Anecdotal accounts demonstrate that some populations have been decimated since 1850, and recent studies demonstrate that declines are still underway. From 2004-2008 I investigated the ecology of wood turtles in Massachusetts and New Hampshire. I obtained between one and five years of annual home range data for 150 turtles, and evaluated population structure at 31 sites in five major watersheds. Seasonal floods displaced 7% of wood turtles annually in one watershed, and accounted for elevated mortality. Twelve wood turtles were displaced < 16.8 km, and two were displaced over a 65-foot dam. Several turtles overwintered at their displacement site and two returned successfully, indicating that floods are a mechanism of population connectivity. Several homing turtles ended up in new areas. Turtles occupied stream segments with gradient < 1%, lower than generally available. Agricultural machinery accounted for most observed mortality, followed by automobiles and mammals. Female turtles exhibit smaller home ranges in agricultural areas. Older turtles move farther from the river than do young turtles, possibly reflecting their familiarity with a former landscape. Population density ranged from 0-40.4 turtles/river-kilometer. The highest densities occur in central New Hampshire and lower densities occur in the Housatonic watershed. Population density is negatively correlated with agriculture at both riparian and watershed scales, and responds unimodally to forest cover. Wood turtle populations in western Massachusetts are declining by 6.6-11.2% annually. I estimated ages of turtles by assessing shell-wear rates from photographs. Wood turtles regularly achieve ages over 80 years, and like related species, do not exhibit clear signs of senescence. Old wood turtles are reproductively dominant, and their survival rates are twice as high as young turtles. Carapace scutes appear to require 80 years to become worn. Population modeling indicates that wood turtle populations are declining in New England due to anthropogenic and natural factors. Conservation efforts must address the effects of agriculture on adult survival. Climate change may negatively affect northeastern wood turtles through increased flooding. Populations in mountainous areas may be likely candidates for conservation because they don't occupy prime agricultural land, but may be more susceptible to floods.
|
4 |
Microhabitat Use by Blanding’s Turtles (<i>Emydoidea blandingii</i>) and Wood Turtles (<i>Glyptemys insculpta</i>) in a Shared LandscapeReine K Sovey (8812556) 08 May 2020 (has links)
<p>Understanding and adequately
protecting habitat is at the forefront of modern conservation concerns. Turtles
are especially vulnerable to habitat loss, and are therefore a top priority for
habitat research. To help meet this need, I used radio telemetry to collect
microhabitat data from two imperiled species of turtles that occupy a military
base in Michigan. Preliminary data exploration was carried out with principal
components analysis (PCA). Microhabitat use was then modeled for each species using
conditional logistic regression (CLR), with a generalized estimating equation
(GEE) element to limit bias due to individual variation. Finally, I compared
habitat use between sympatric Blanding’s and Wood Turtles using Mann-Whitney U
tests and Mood’s median tests to investigate the degree of overlap in
microhabitat use when these species occur in sympatry. Evidence for
microhabitat selection in Blanding’s Turtles was weak, suggesting that they
likely do not make habitat decisions at this level. Wood Turtles selected sites
that were farther from water and had fewer trees, less overstory canopy cover,
and more ground cover. Additionally, the two species differed in several
aspects of microhabitat use; Wood Turtles were more terrestrial and more
tolerant of tree cover than Blanding’s Turtles. Patterns of microhabitat use
found in this study match previously observed behavior of turtles in high
quality habitat, suggesting that managers should work to maintain the habitat
currently available at Camp Grayling. Additionally, because both turtle species
were associated with open canopy, selective logging could benefit turtles
provided care is given to timing and methods. </p>
|
5 |
A REVIEW AND ANALYSIS OF THE LINKED DECISIONS IN THE CONFISCATION OF ILLEGALLY TRADED TURTLESSmith, Desiree 14 November 2023 (has links) (PDF)
Over the last few decades, freshwater turtles have become more common in the global illegal wildlife trade because of the growing demand in the pet trade. Illegally traded turtles may be intercepted and deposited by a number of agencies. However, when turtles are confiscated, many uncertainties and risks make releasing them back to the wild difficult. Therefore, we used tools from decision analysis to achieve the following three objectives: (1) to identify points of intervention in illegal turtle trade using conceptual models, (2) to outline the linked decisions for turtle confiscation and repatriation using decision trees, and (3) to evaluate the decision trees for two example scenarios, one with complete information and one with uncertainty. We used the wood turtle (Glyptemys insculpta) as a case study, which is a species of conservation concern, in part due to illegal wildlife trafficking. We conducted informational interviews of biologists, law enforcement, land managers, and zoo staff, which we refer to as a decision makers. Interviews revealed that decisions regarding the disposition of confiscated turtles are complicated by uncertainty in disease status and potential differences in origin and confiscation locations. Decision makers that handle confiscated turtles also recognize that their decisions are linked, where linkages rely on personal contacts. In evaluating our decision trees, we found that despite different amounts and kinds of uncertainties, release of the confiscated wood turtles to the wild provided the highest conservation value. Collectively, our research shows how the use of decision trees can help improve decision making in the face of uncertainty.
|
6 |
La génétique au service de la conservation de la tortue des bois (Glyptemys insculpta)Bouchard, Cindy 09 1900 (has links)
La biologie de la conservation est un domaine de recherche en pleine expansion en raison de la perte accélérée de la biodiversité à l’échelle mondiale. Pour mieux comprendre les processus et les menaces au maintien des populations de petite taille et les effets des facteurs anthropiques sur la biodiversité, la génétique est fréquemment utilisée en conservation. Des analyses génétiques peuvent, par exemple, nous informer sur les tendances à long terme, la diversité des populations et les stratégies de reproduction d’une espèce. La tortue des bois (Glyptemys insculpta) est une espèce endémique à l’Amérique du Nord qui est en danger d’extinction selon l’Union internationale pour la conservation de la nature. Dans le cadre de ma thèse, j’avais comme objectif de caractériser la diversité génétique de cette espèce menacée au Canada. À cet effet, j’ai analysé la génétique des populations de tortues des bois à plusieurs échelles spatiales et temporelles, afin de mieux cerner les processus ayant un impact sur la diversité des populations.
Dans un premier temps, les relations de parentalité ont été reconstruites au sein d’une population de tortues des bois pour estimer la fréquence de paternité multiple et de paternité répétée. Les résultats de mes travaux suggèrent que l’emmagasinement de sperme chez la femelle et la reproduction multiple avec les mêmes partenaires pour plus d’une saison de reproduction pourraient expliquer ces phénomènes. Ces stratégies de reproduction pourraient dans ce cas être induites par la faible densité de la population à l’étude, ou encore par la fidélité au site d’hibernation où la majorité des évènements de copulation ont lieu.
Par la suite, je me suis intéressée à la diversité génétique des populations de tortues de bois. J’ai voulu comprendre les effets de la configuration spatiale des éléments du paysage et les évènements de dispersion géographique sur la diversité des populations. À l’aide d’une approche de génétique du paysage, mes analyses montrent que la division des populations par bassins versants explique une large fraction de la diversité génétique interpopulations. Ces résultats confirment également que les bassins versants représentent des unités de gestion propices à la protection des populations de tortues des bois.
Finalement, des analyses de réseaux ont été utilisées pour mieux cerner la dynamique de flux génique entre les populations de la rive nord et de la rive sud du fleuve Saint-Laurent. Plus spécifiquement, la rive nord se caractérise par un réseau robuste de populations isolées, alors que les populations de la rive sud présentent plutôt une structure de métapopulation. En utilisant les réseaux construits à partir de données génétiques, des scénarios hypothétiques furent comparés pour explorer la sélection de populations à l’aide du logiciel BRIDES. Les résultats de ces analyses ont permis de cibler l’importance de certaines populations de tortues des bois pour la connectivité du réseau. L’importance de ces populations n’aurait pu être prédite par les résultats de la diversité et de la différenciation génétique, les indices de centralité et les analyses d’élimination de nœuds.
Grâce à la génétique, cette thèse apporte de nouvelles connaissances sur la tortue des bois, les stratégies de reproduction des différents sexes, le flux génique, la connectivité et l’influence du réseau hydrographique sur la diversité des populations. Ces résultats nous permettent d’avoir une meilleure compréhension des processus affectant la diversité génétique de cette espèce afin de mieux la protéger. Toutes les analyses réalisées pour cette thèse sont directement applicables à l’ensemble des autres espèces longévives avec des générations chevauchantes. / Conservation biology is a rapidly expanding field of research due to the accelerating loss of global biodiversity. To better understand the processes and threats to the persistence of small populations and the effects of anthropogenic factors on biodiversity, genetic approaches are frequently used in conservation. Genetic analyzes can, for example, inform us about long-term trends, population diversity and reproductive strategies of a species. The wood turtle (Glyptemys insculpta) is a species endemic to North America that is endangered according to the International Union for the Conservation of Nature. As part of my thesis, my objective was to characterize the genetic diversity of this threatened species in Canada. In order to better understand the impact of reproductive strategy and landscape structure on population diversity, I analyzed the genetics of wood turtle populations at several spatial and temporal scales.
First, parentage relationships were reconstructed in a population of wood turtles to estimate the frequency of multiple and repeated paternity. The results of my work suggest that sperm storage in females and multiple reproduction with the same partners for more than one breeding season could explain these phenomena. These reproduction strategies could in this case be induced by the low density of the study population, or by fidelity to the overwintering site where the majority of copulation events take place.
Subsequently, I assessed the genetic diversity of wood turtle populations. I wanted to understand the effects of the landscape configuration and geographic dispersion events on the diversity of populations. Using a landscape genetics approach, my analyzes show that the division of populations by watershed explains a large fraction of the genetic diversity between populations. These results also confirm that watersheds represent management units conducive to the protection of wood turtle populations.
Finally, network analysis was used to better understand the gene flow dynamics among populations located on the north and south shores of the St. Lawrence River. More specifically, the north shore is characterized by a robust network of isolated populations, whereas the populations on the south shore present more of a metapopulation structure. Using population graphs, hypothetical scenarios were compared to explore the node selection process using the BRIDES algorithm. The results of these analyzes made it possible to point out specific populations of wood turtles, considering their importance for network connectivity. This could have not been predicted by using genetic diversity and distinctiveness estimates, node-based metrics, and node removal analysis for these populations.
Thanks to genetics, this thesis brings new knowledge on the wood turtle, the reproductive strategies of both sexes, the gene flow, the connectivity and the influence of the hydrographic network on population diversity. These results allow us to have a better understanding of the processes affecting the genetic diversity of this species in order to better protect it. All analyses performed for this thesis are directly applicable to other long-lived species with overlapping generations.
|
Page generated in 0.0591 seconds