• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

January 2017 (has links)
abstract: Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a β-sheet or α-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix confirmation. In addition, the conformations of the Ala, Ser, and Tyr residues in silk fibroin of B. mori were investigated and it indicates that the Ala, Ser, and Tyr residues are all present in disordered structures in silk I (before spinning), while show different conformations in silk II (after spinning). Specifically, in silk II, the Ala and Tyr residues are present in both disordered structures and β-sheet structures, and the Ser residues are present primarily in β-sheet structures. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2017
2

Engineering of Electrically Conductive Cardiac Microtissues to Study the Influence of Gold Nanomaterials on Maturation and Electrophysiology of Cardiomyocytes

January 2018 (has links)
abstract: Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential surgical complications. In this regard, there is an urgent need for developing new effective therapeutic strategies to induce regeneration and restore the loss contractility of infarcted myocardium. Over the past decades, regenerative medicine has emerged as a promising strategy to develop scaffold-free cell therapies and scaffold-based cardiac patches as potential approaches for MI treatment. Despite the progress, there are still critical shortcomings associated with these approaches regarding low cell retention, lack of global cardiomyocytes (CMs) synchronicity, as well as poor maturation and engraftment of the transplanted cells within the native myocardium. The overarching objective of this dissertation was to develop two classes of nanoengineered cardiac patches and scaffold-free microtissues with superior electrical, structural, and biological characteristics to address the limitations of previously developed tissue models. An integrated strategy, based on micro- and nanoscale technologies, was utilized to fabricate the proposed tissue models using functionalized gold nanomaterials (GNMs). Furthermore, comprehensive mechanistic studies were carried out to assess the influence of conductive GNMs on the electrophysiology and maturity of the engineered cardiac tissues. Specifically, the role of mechanical stiffness and nano-scale topographies of the scaffold, due to the incorporation of GNMs, on cardiac cells phenotype, contractility, and excitability were dissected from the scaffold’s electrical conductivity. In addition, the influence of GNMs on conduction velocity of CMs was investigated in both coupled and uncoupled gap junctions using microelectrode array technology. Overall, the key contributions of this work were to generate new classes of electrically conductive cardiac patches and scaffold-free microtissues and to mechanistically investigate the influence of conductive GNMs on maturation and electrophysiology of the engineered tissues. / Dissertation/Thesis / Supplementary Videos / Doctoral Dissertation Biomedical Engineering 2018
3

Synthesis and Applications of Mutimodal Hybrid Albumin Nanoparticles for Chemotherapeutic Drug Delivery and Phototherml Therapy Platforms

Peralta, Donna V 13 August 2014 (has links)
Progress has been made in using human serum albumin nanoparticles (HSAPs) as carrier systems for targeted treatment of cancer. Human serum albumin (HSA), the most abundant human blood protein, can form HSAPs via a desolvation and crosslinking method, with the size of the HSAPs having crucial importance for drug loading and in vivo performance. Gold nanoparticles have also gained medicinal attention due to their ability to absorb near-infrared (NIR) light. These relatively non-toxic particles offer combinational therapy via imaging and photothermal therapy (PPTT) capabilities. A desolvation and crosslinking approach was employed to encapsulate gold nanoparticles (AuNPs), hollow gold nanoshells (AuNSs), and gold nanorods (AuNRs), into efficiently sized HSAPs for future tumor heat ablation via PPTT. The AuNR-HSAPs, AuNP-HSAPs and AuNS-HSAPs had average particle diameters of 222 ± 5, 195 ± 9 and 156 ± 15, respectively. We simultaneously encapsulated AuNRs and the anticancer drug paclitaxel (PAC), forming PAC-AuNR-HSAPs with overall average particle size of 299 ± 6 nm. Loading of paclitaxel into PAC-AuNR-HSAPs reached 3μg PAC/mg HSA. PAC-AuNR-HSAPs experienced photothermal heating of 46 ˚C after 15 minutes of NIR laser exposure; the temperature necessary to cause severe cellular hyperthermia. There was a burst release of paclitaxel up to 188 ng caused by the irradiation session, followed by a temporal drug release. AuNR-HSAPs were tested for ablation of renal cell carcinoma using NIR irradiation in vitro. Particles created with the same amount of AuNRs, but varying HSA (1, 5 or 20 mg) showed overall particle size diameters 409 ± 224, 294 ± 83 and 167 ± 4 nm, respectively. Increasing HSAPs causes more toxicity under non-irradiated treatment conditions: AuNR-HSAPs with 20 mg versus 5 mg HSA caused cell viability of 64.5% versus 87%, respectively. All AuNR-HSAPs batches experienced photothermal heating above 42 ˚C. Coumarin-6, was used to visualize the cellular uptake of AuNR-HSAPs via fluorescence microscopy. Finally, camptothecin (CPT) an antineoplastic agent and BACPT (7-butyl-10-aminocamptothecin) were loaded into HSAPs to combat their aqueous insolubility. BACPT-HSAPs loaded up to 5.25 micrograms BACPT/ mg of HSA. CPT encapsulation could not be determined. BACPT-HSAPs and CPT-HSAPs showed cytotoxicity to human sarcoma cells in vitro.

Page generated in 0.0607 seconds