Spelling suggestions: "subject:"old nanopartikel"" "subject:"old goldnanopartikel""
1 |
Preparation and applications of periodical gold nanoparticle arraysMorarescu, Rodica. Unknown Date (has links)
Univ., Diss., 2009--Kassel.
|
2 |
Geordnete Nanoteilchen-Ensembles auf Oberflächen: Herstellung, thermische Stabilität und Anwendung als ÄtzmaskeWeigl, Frank, January 2007 (has links)
Ulm, Univ., Diss., 2007.
|
3 |
Synchrotron- und laseraktiviertes Wachstum von Edelmetallpartikeln in Gläsern partikelgrössenabhängige lineare und nichtlineare PhotolumineszenzEichelbaum, Maik January 2008 (has links)
Zugl.: Berlin, Humboldt-Univ., Diss., 2008
|
4 |
Funktionalisierte Polymerkomposite auf Basis von Poly(3,4-ethylendioxythiophen) und GoldHain, Jessica 29 April 2008 (has links) (PDF)
Poly(3,4-ethylenedioxythiophene), PEDOT, belongs to the group of conducting polymers and is characterized by its high stability, a moderate band gap and its optical transparency in the conductive state. A large disadvantage of conducting polymers, and also PEDOT, is their poor solubility. One way to achieve processible materials is the synthesis of colloidal particles. Thus, this work focuses on the development of conductive particles by preparing composite structures. Polymeric colloids like latex particles and microgels were used as templates for the oxidative polymerization of EDOT. Depending on template structure completely different composite morphologies with variable properties were obtained. It was found that modification with PEDOT did not only cause conductive particles for application as humidity sensor materials, but also candidates for further functionalization with gold nanoparticles (Au-NPs). Due to a multi-stage synthesis route it was possible to achieve polystyrene(core)-PEDOT(shell)-particles decored with Au-NPs. Microgels acting as “micro reactors” for the incorporation of PEDOT and Au-NPs were also used for preparing multifunctional composites for catalytic applications. / Poly(3,4-ethylendioxythiophen), PEDOT, gehört zur Gruppe der leitfähigen Polymere und zeichnet sich durch seine hohe Stabilität, eine moderate Bandlücke und seine optische Transparenz im dotierten Zustand aus. Ein Nachteil leitfähiger Polymere, wie auch von PEDOT, ist deren schlechte Löslichkeit. Die Synthese kolloidaler Partikel bietet jedoch eine Möglichkeit dieses Problem zu umgehen. In diesem Zusammenhang richtete sich der Fokus dieser Arbeit auf die Darstellung leitfähiger Partikel in Form von Kompositstrukturen. Polymerkolloide, wie Latex- und Mikrogelpartikel, sind als Template eingesetzt worden, in deren Gegenwart PEDOT durch eine oxidative Polymerisation synthetisiert wurde. In Abhängigkeit von der Struktur des Templats sind unterschiedliche Kompositmorphologien mit steuerbaren Eigenschaften erhalten worden. Auf diese Weise wurden neben Materialien für die Feuchtigkeitssensorik leitfähige Kompositpartikel hergestellt, die zusätzlich mit Gold-Nanopartikeln (Au-NP) funktionalisiert werden konnten. Durch ein mehrstufiges Syntheseverfahren sind somit Polystyrol(Kern)-PEDOT(Schale)-Partikel mit Au-NP-funktionalisierter Oberfläche synthetisiert worden. Mikrogelpartikel, die als „Mikroreaktoren“ für die Inkorporation von PEDOT- und Au-NP dienten, wurden ebenfalls eingesetzt, um multifunktionale Komposite mit katalytischen Eigenschaften herzustellen.
|
5 |
Photothermal Single Particle Detection in Theory & ExperimentsSelmke, Markus 28 October 2013 (has links) (PDF)
The dissertation presents theoretical and experimental studies on the physical origin of the signal in photothermal microscopy of single particles. This noninvasive optical far field microscopy scheme allows the imaging and detection of single absorbing nanoparticles. Based on a heat-induced pertur- bation in the refractive index in the embedding medium of the nanoscopic absorber, a corresponding probe beam modification is measured and quantified. The method is well established and has been applied since its first demonstration in 2002 to the imaging and characterization of various absorbing particle species, such as quantum dots, single molecules and nanoparticles of different shapes.
The extensive theoretical developments presented in this thesis provide the first quantitative assess- ment of the signal and at the same time enlarge its phenomenology and thereby its potential. On the basis of several approximation schemes to the Maxwell equations, which fundamentally gov- ern the interaction of light with inhomogeneities, several complementing models are devised which describe the photothermal signal both qualitatively and quantitatively. In succession an interdepen- dent and self-consistent set of theoretical descriptions is given and allows important experimental consequences to be drawn. In consequence, the photothermal signal is shown to correspond to the action of a nanoscopic (thermal) lens, represented by the spherically symmetric refractive index pro- file n(r) which accompanies the thermal expansion of the absorber’s environment. The achieved quantification allows the direct measurement of absorption cross-sections of nanoparticles. Further, a qualitatively new phenomenology of the signal is unraveled and experimentally demonstrated. The separate roles of the probing and the heating beams in photothermal microscopy is dismantled and the influence of their relative alignment shown to allow for a controlled adjustment of the effective detection volume. For the first time, both positive and negative signals are demonstrated to occur and to be the characteristic signature of the lens-like action on the probe beam. The detection of the probe beam’s modification is also shown to sensitively depend on the aperture used in the detection chan- nel, and a signal optimization is shown to be feasible. Also, a generalization of the detectable signal via the use of a quadrant photodiode is achieved. Specifically, measuring the far field beam deflec- tion the result of the beam passing the lens off-center manifests in a laterally split detection volume. Hereby, finally each classical photothermal spectroscopic techniques has been shown to possess its microscopic counterpart. Central to the understanding of this generalized and new phenomenology is a scalar wave-optical model which draws an analogy between the scattering of a massive particle wave-packet by a Coulomb potential and the deflection of a focused beam by a photonic potential connected with the thermal lens.
The significance of the findings is demonstrated by its methodological implications on photother- mal correlation spectroscopy in which the diffusion dynamics of absorbing colloidal particles can be studied. The unique split focal detection volumes are shown to allow the sensitive measurement of a deterministic velocity field. Finally, the method is supplemented by a newly introduced sta- tistical analysis method which is capable of characterizing samples containing a heterogeneous size distribution.
|
6 |
Hydrophob/hydrophil schaltbare Nanoteilchen für die BiomarkierungDubavik, Aliaksei 20 January 2012 (has links) (PDF)
There is a demand for new straightforward approaches for stabilization and solubilization of various nanoparticulate materials in their colloidal form, that pave way for fabrication of materials possessing compatibility with wide range of dispersing media. Therefore in this thesis a new general method to form stable nanocrystals in water and organics using amphiphilic polymers generated through simple and low cost techniques is presented and discussed. Amphiphilic coating agents are formed using thiolated or carboxylated polyethylene glycol methyl ether (mPEG-SH) as a starting material. These materials are available with a wide variety of chain lengths.
The method of obtaining of amphiphilic NPs is quite general and applicable for semiconductor CdTe nanocrystals as well as nanoscale noble metal (Au) and magnetic (Fe3O4) particles. This approach is based on anchoring PEG segment to the surface of a nanoparticle to form an amphiphilic palisade. Anchoring is realized via interaction of –SH (for CdTe and Au) or –COOH (in the case of magnetite) functional groups with particle’s surface. The resulting amphiphilicity of the nanocrystals is an inherent property of their surface and it is preserved also after careful washing out of solution of any excess of the ligand. The nanocrystals reversibly transfer between different phases spontaneously, i.e. without any adjustment of ionic strength, pH or composition of the phases. Such reversible and spontaneous phase transfer of nanocrystals between solvents of different chemical nature has a great potential for many applications as it constitutes a large degree of control of nanocrystals compatibility with technological processes or with bio-environments such as water, various buffers and cell media as well as their assembly and self-assembly capabilities.
|
7 |
Hydrophob/hydrophil schaltbare Nanoteilchen für die BiomarkierungDubavik, Aliaksei 15 July 2011 (has links)
There is a demand for new straightforward approaches for stabilization and solubilization of various nanoparticulate materials in their colloidal form, that pave way for fabrication of materials possessing compatibility with wide range of dispersing media. Therefore in this thesis a new general method to form stable nanocrystals in water and organics using amphiphilic polymers generated through simple and low cost techniques is presented and discussed. Amphiphilic coating agents are formed using thiolated or carboxylated polyethylene glycol methyl ether (mPEG-SH) as a starting material. These materials are available with a wide variety of chain lengths.
The method of obtaining of amphiphilic NPs is quite general and applicable for semiconductor CdTe nanocrystals as well as nanoscale noble metal (Au) and magnetic (Fe3O4) particles. This approach is based on anchoring PEG segment to the surface of a nanoparticle to form an amphiphilic palisade. Anchoring is realized via interaction of –SH (for CdTe and Au) or –COOH (in the case of magnetite) functional groups with particle’s surface. The resulting amphiphilicity of the nanocrystals is an inherent property of their surface and it is preserved also after careful washing out of solution of any excess of the ligand. The nanocrystals reversibly transfer between different phases spontaneously, i.e. without any adjustment of ionic strength, pH or composition of the phases. Such reversible and spontaneous phase transfer of nanocrystals between solvents of different chemical nature has a great potential for many applications as it constitutes a large degree of control of nanocrystals compatibility with technological processes or with bio-environments such as water, various buffers and cell media as well as their assembly and self-assembly capabilities.
|
8 |
Funktionalisierte Polymerkomposite auf Basis von Poly(3,4-ethylendioxythiophen) und GoldHain, Jessica 15 April 2008 (has links)
Poly(3,4-ethylenedioxythiophene), PEDOT, belongs to the group of conducting polymers and is characterized by its high stability, a moderate band gap and its optical transparency in the conductive state. A large disadvantage of conducting polymers, and also PEDOT, is their poor solubility. One way to achieve processible materials is the synthesis of colloidal particles. Thus, this work focuses on the development of conductive particles by preparing composite structures. Polymeric colloids like latex particles and microgels were used as templates for the oxidative polymerization of EDOT. Depending on template structure completely different composite morphologies with variable properties were obtained. It was found that modification with PEDOT did not only cause conductive particles for application as humidity sensor materials, but also candidates for further functionalization with gold nanoparticles (Au-NPs). Due to a multi-stage synthesis route it was possible to achieve polystyrene(core)-PEDOT(shell)-particles decored with Au-NPs. Microgels acting as “micro reactors” for the incorporation of PEDOT and Au-NPs were also used for preparing multifunctional composites for catalytic applications. / Poly(3,4-ethylendioxythiophen), PEDOT, gehört zur Gruppe der leitfähigen Polymere und zeichnet sich durch seine hohe Stabilität, eine moderate Bandlücke und seine optische Transparenz im dotierten Zustand aus. Ein Nachteil leitfähiger Polymere, wie auch von PEDOT, ist deren schlechte Löslichkeit. Die Synthese kolloidaler Partikel bietet jedoch eine Möglichkeit dieses Problem zu umgehen. In diesem Zusammenhang richtete sich der Fokus dieser Arbeit auf die Darstellung leitfähiger Partikel in Form von Kompositstrukturen. Polymerkolloide, wie Latex- und Mikrogelpartikel, sind als Template eingesetzt worden, in deren Gegenwart PEDOT durch eine oxidative Polymerisation synthetisiert wurde. In Abhängigkeit von der Struktur des Templats sind unterschiedliche Kompositmorphologien mit steuerbaren Eigenschaften erhalten worden. Auf diese Weise wurden neben Materialien für die Feuchtigkeitssensorik leitfähige Kompositpartikel hergestellt, die zusätzlich mit Gold-Nanopartikeln (Au-NP) funktionalisiert werden konnten. Durch ein mehrstufiges Syntheseverfahren sind somit Polystyrol(Kern)-PEDOT(Schale)-Partikel mit Au-NP-funktionalisierter Oberfläche synthetisiert worden. Mikrogelpartikel, die als „Mikroreaktoren“ für die Inkorporation von PEDOT- und Au-NP dienten, wurden ebenfalls eingesetzt, um multifunktionale Komposite mit katalytischen Eigenschaften herzustellen.
|
9 |
Photothermal Single Particle Detection in Theory & ExperimentsSelmke, Markus 10 July 2013 (has links)
The dissertation presents theoretical and experimental studies on the physical origin of the signal in photothermal microscopy of single particles. This noninvasive optical far field microscopy scheme allows the imaging and detection of single absorbing nanoparticles. Based on a heat-induced pertur- bation in the refractive index in the embedding medium of the nanoscopic absorber, a corresponding probe beam modification is measured and quantified. The method is well established and has been applied since its first demonstration in 2002 to the imaging and characterization of various absorbing particle species, such as quantum dots, single molecules and nanoparticles of different shapes.
The extensive theoretical developments presented in this thesis provide the first quantitative assess- ment of the signal and at the same time enlarge its phenomenology and thereby its potential. On the basis of several approximation schemes to the Maxwell equations, which fundamentally gov- ern the interaction of light with inhomogeneities, several complementing models are devised which describe the photothermal signal both qualitatively and quantitatively. In succession an interdepen- dent and self-consistent set of theoretical descriptions is given and allows important experimental consequences to be drawn. In consequence, the photothermal signal is shown to correspond to the action of a nanoscopic (thermal) lens, represented by the spherically symmetric refractive index pro- file n(r) which accompanies the thermal expansion of the absorber’s environment. The achieved quantification allows the direct measurement of absorption cross-sections of nanoparticles. Further, a qualitatively new phenomenology of the signal is unraveled and experimentally demonstrated. The separate roles of the probing and the heating beams in photothermal microscopy is dismantled and the influence of their relative alignment shown to allow for a controlled adjustment of the effective detection volume. For the first time, both positive and negative signals are demonstrated to occur and to be the characteristic signature of the lens-like action on the probe beam. The detection of the probe beam’s modification is also shown to sensitively depend on the aperture used in the detection chan- nel, and a signal optimization is shown to be feasible. Also, a generalization of the detectable signal via the use of a quadrant photodiode is achieved. Specifically, measuring the far field beam deflec- tion the result of the beam passing the lens off-center manifests in a laterally split detection volume. Hereby, finally each classical photothermal spectroscopic techniques has been shown to possess its microscopic counterpart. Central to the understanding of this generalized and new phenomenology is a scalar wave-optical model which draws an analogy between the scattering of a massive particle wave-packet by a Coulomb potential and the deflection of a focused beam by a photonic potential connected with the thermal lens.
The significance of the findings is demonstrated by its methodological implications on photother- mal correlation spectroscopy in which the diffusion dynamics of absorbing colloidal particles can be studied. The unique split focal detection volumes are shown to allow the sensitive measurement of a deterministic velocity field. Finally, the method is supplemented by a newly introduced sta- tistical analysis method which is capable of characterizing samples containing a heterogeneous size distribution.:Contents
Bibliographic description
Abbreviations
1 Introduction
2 Theoretical Background
2.1 The current literature on the subject of the photothermal signal
2.2 Thermal conduction, and the temperature field around heated nanoparticles
2.3 The linear thermo-refractive response and the thermal lens
2.4 MAXWELL equations and approximation schemes
2.4.1 The MAXWELL equations
2.4.2 HELMHOLTZ equations
2.4.3 Paraxial HELMHOLTZ equation for the field components
2.4.4 Geometrical optics and the eikonal ansatz
2.5 Diffraction and the optical resolution limit in far field microscopy
2.5.1 Transmission scanning microscopy
2.5.2 Point spread functions and aberrations
2.5.3 Scalar diffraction approximation for weakly focused beams
2.5.4 Vectorial diffraction for highly focused electromagnetic fields
2.5.5 Theoretical description of transmission signals
2.6 Elastic scattering of light
2.6.1 Overview of optical elastic scattering theory
2.6.2 The integral equation of potential scattering and the BORN approximation
2.6.3 The generalized LORENZ-MIE theory
2.6.4 The electromagnetic fields
2.6.5 Description of the incident field: beam shape coefficients
2.6.6 Multilayered scatterers
2.6.7 POYNTING vector and field decomposition
2.6.8 Energy balance & total cross-sections
2.6.9 Optical theorem & the extinction paradox
2.6.10 Small particle scattering: the RAYLEIGH-limit
2.7 Optical properties of gold nanoparticles & Surface plasmon resonances
2.7.1 Dielectric function of gold
2.7.2 Total cross-sections of plasmonic nanoparticles
properties of gold nanoparticles & Surface plasmon resonances
2.8 (Hot) BROWNian motion, diffusion and their statistical analysis
2.8.1 (Hot) BROWNian motion
2.8.2 Diffusion and correlation analysis
2.8.3 Methods regarding the signal statistics of diffusing tracer particles
2.9 RUTHERFORD scattering of charged particles
2.9.1 Classical RUTHERFORD scattering
2.9.2 Quantum mechanical COULOMB scattering
3 Experimental Setup
3.1 Sample preparation
3.2 Photothermal microscopy setup
4 Photothermal Imaging: Results and Discussion
4.1 MAXWELL equations: Exact treatment of the PT signal
4.1.1 Angularly resolved powers: Fractional cross-sections
4.1.2 Incident power and background normalization
4.1.3 Fractional scattering and extinction cross-sections (off-axis)
4.1.4 Fractional scattering and extinction cross-sections (on-axis)
4.1.5 Small particle approximation(on-axis)
4.1.6 General properties of transmission scans
4.1.7 The thermal lens n(r) in the MIE-scattering framework
4.1.8 The photothermal signal F in the MIE scattering framework
4.2 Geometrical optics: Photonic RUTHERFORD scattering (ray optics)
4.2.1 FERMAT’s principle for a thermal lens medium
4.2.2 Gaussian beam transformation by a thermal lens
4.2.3 Experiments using weakly focused, i.e. nearly Gaussian beams
4.3 HELMHOLTZ equation: Photonic RUTHERFORD scattering (wave optics)
4.3.1 Plane-wave scattering
4.3.2 Focused beam scattering
4.3.3 Connection to the far field
4.3.4 Photothermal Rutherford scattering microscopy
4.3.5 Photothermal half-aperture measurements
4.4 Paraxial HELMHOLTZ equation: FRESNEL diffraction by a thermal lens
4.4.1 The diffraction integral and the phase mask for a thermal lens
4.4.2 The photothermal signal expressed via the image plane field
4.4.3 Experimental demonstration of the signal inversion
4.4.4 Connection to photothermal RUTHERFORD scattering
4.5 Plane-wave extinction & scattering by a thermal lens
4.5.1 The BORN approximation for the ideal and time-dependent thermal lens
4.5.2 The eikonal approximation for the ideal thermal lens and x>>1
4.5.3 Lessons to be learned from plane-wave scattering by thermal lenses
4.6 What is a lens? And is n(r) a lens?
5 Methodological Applications of the Results
5.1 Generalized photothermal correlation spectroscopy (incl. twin-PhoCS)
5.2 Photothermal signal distribution analysis (PhoSDA)
6 Summary and Outlook
6.1 Summary of the results
6.2 Outlook
7 Appendix
7.1 Material parameters
7.2 Calculation parameters
7.3 Interactive simulation scripts (Processing)
7.4 Vectorial scattering in the BORN-approximation
7.5 Details regarding the scattering framework
7.5.1 Connection between Gmn,TE,TM of Ref.1 and gmn,TE,TM in the GLMT
7.5.2 Off-axis BSCs including aberration (single interface)
7.5.3 Details on the incidence power Pinc
7.5.4 Details on the incidence power Pinc for arbitrary beams
7.5.5 Explicit expressions for the spherical field components of Es,i and Hs,i
7.5.6 Note on the time-dependence and the corresponding sign-conventions in M
7.5.7 Recurrence relation for Pn and tn
7.5.8 Gaussian beam shape coefficients: Off-axis
7.5.9 Multilayered Scatterer
7.5.10 POYNTING-vector and energy flow fields
7.5.11 Convergence
7.5.12 Further evaluations in the GLMT framework
7.5.13 Diffraction model: Comparison of angular PT signal pattern to the GLMT
7.6 Details on geometrical optics models
7.6.1 Geometrical optics: Exact solution r(f) for |bx|<1
7.6.2 Correspondences in photonic and partile RUTHERFORD scattering
7.6.3 On the difference in the definition of optical energy
7.6.4 Ray-opticsphotothermalsignal
7.6.5 Thick lens raytracing and the equivalent lens shape for a given aberration
7.7 Thermal lens around a wire of radius R
7.8 Twin-PhoCS: Graphic illustration of the CCF integrand
Curriculum Vitae
Publications
Declaration
Acknowledgements
List of Tables
List of Figures
Bibliography
|
10 |
Investigation of polyphenyls, alkanedithiols, alkanediamines and alkanebisdithiocarbamates as linkers for nanocomposite-based chemiresistive sensorsDaskal, Yelyena 02 August 2023 (has links)
Im Rahmen dieser Arbeit wurden neuartige Materialien basierenden auf Gold-Nanopartikeln (AuNP) untersucht. AuNP kommen als Materialien für optische und chemiresistive Sensoren zum Einsatz, deren besondere optische und elektrische Eigenschaften sich je nach Form, Größe, Oberflächenchemie oder Aggregatzustand des Nanopartikels verändern kann. Außerdem kann die Kopplung von AuNP mit organischen Molekülen die optischen und elektrischen Eigenschaften dabei beeinflussen.
Diese Untersuchung basiert auf dem Au-NP-Komposit, welches durch lagenweise
Selbstassemblierung entweder automatisch mit einer Durchflusszelle oder manuell durch das Aufschleudern mit Spincoater hergestellt wurden. Für die Selbstassemblierung werden Dodecylamine-stabilisierte AuNP sowie Alkandithiole, Alkandiamine, Alkanbisdithiocarbamate mit unterschiedlicher Alkylenkette und Polyphenyle mit unterschiedlicher Ringzahl verwendet.
In dieser Arbeit wurden die für die Untersuchungen verwendeten Methoden und Materialien beschrieben, ein besonderer Fokus lag dabei in der Anwendung verschiedener
Methoden der Probenherstellung und Lagerbedingungen für die Erreichung einer optimierten Herstellungsmethode.
In den folgenden Kapiteln wurden sowohl die Probenvorbereitung mit einem eigens angefertigten automatischem Aufbau betrachtet, als auch das Assemblierungsverhalten und die Eigenschaften der Proben, die mit verschiedenen organischen Molekülen verknüpft sind. Die Röntgen-Photoelektronenspektroskopie wurde angewendet, um die Filmzusammensetzung und den Grad der Vernetzung zu untersuchen. Die Empfindlichkeit der Filme wurde durch Dosierung mit Dämpfen von Toluol, 1-Propanol, 4-Methyl-2-pentanon und Wasser im Konzentrationsbereich von 100 ppm bis 5000 ppm untersucht. Alle Proben reagieren hierbei mit einer Änderung ihres elektrischen Widerstands auf die Analyte. Obwohl die Änderung des Gesamtwiderstandes eher schwach ist, zeigen die Sensoren ein hohes Signal-Rausch-Verhältnis, das für alle Testdämpfe eine Nachweisgrenze unter 100 ppm anzeigt. Die Reaktionsdynamik zeigt eine hohe Reversibilität und einen schnellen Sensormechanismus. Darüber hinaus wurden die optischen Eigenschaften der Linkers mittels UV-Vis-Spektroskopie untersucht und die Probendicke mit Profilometer gemessen. Außerdem wurde eine oberflächenverstärkten Raman-Streuung, sowie eine oberflächenverstärkten Infrarotabsorption durchgeführt, um die Möglichkeit der Umsetzung kugelförmige Dodecylamine-stabilisierte AuNP mit einer durchschnittlichen Größe von 4 nm für den optischen Nachweis zu überprüfen.
Im abschließenden Teil der Arbeit wurden die Auswirkungen von Oxidationsprozessen und Alterung auf das Au-NP-Komposit untersucht. Um die Auswirkungen der Oxidation auf die dünnen Gold-Nanopartikel-Filme zu erforschen wurden die Proben mit Ozon in einer unterschiedlichen Oxidationzeit behandelt. Mit Hilfe von XPS bestimmte ich die genaue chemische Zusammensetzung und das Maß des Sauerstoffgehalts in den Filmen.
Die Sorption von volatilen organischen Komponenten in den organischen MolekülenNanopartikel-Kompositen wurde untersucht, um zu verstehen, wie die Oxidation die Sensoreigenschaften beeinflusst. In Folge dessen wurden die erhaltenen Ergebnisse mit unoxidierten Proben verglichen. Das ermöglicht eine Analyse, wie sich die Selektivität und die Empfindlichkeit während der Wechselwirkungen mit der Atmosphäre ändern, und erweitert den gegenwärtigen wissenschaftlichen Kenntnisstand.
Durchgeführte Messungen und Befunde bestätigen, dass sowohl die Vielzahl an Alkandithiole, Alkandiamine, Alkanbisdithiocarbamate und Polyphenyle als auch die besonderen Eigenschaften der AuNP, ein großes Potential für die Entwicklung weiterer sensorischer Anwendungen haben.:Abstract
Zusammenfassung
Abbreviations
1. Motivation and goals setting
2. Materials and Methods
2.1 Characteristics of gold nanoparticles
2.1.1 Characteristics of the gold nanoparticles used for the preparation of thin films
2.2 Organic linkers for gas sensors
2.2.1 Synthesis of linkers
2.3 Preparation of the substrates and transducers
2.3.1 Other materials
2.4 Assembling of the thin films
2.4.1 Manual preparation
2.4.1.1 Common preparation
2.4.1.2 Preparation with lower oxidation level
2.4.1.3 Preparation under argon atmosphere
2.4.2 Automatic layer-by-layer self-assembling using cross flow cell
2.4.3 Oxidation of the samples
2.5 Characterization methods and experimental setups
2.5.1 Profilometer
2.5.2 UV-Vis Spectroscopy
2.5.3 Raman spectroscopy
2.5.4 Infrared absorption spectroscopy
2.5.5 X-ray photoelectron spectroscopy
2.5.6 Current-voltage (I-V) measurements
2.5.7 Investigations of sensor characteristics
3. Results and discussion
3.1 Nanocomposites interlinked with polyphenyls
3.1.1. Optical investigations
3.1.1.1 UV-Vis spectroscopy
3.1.1.2 Surface-enhanced Raman spectroscopy
3.1.1.3 Surface-enhanced infrared absorption spectroscopy
3.1.2 Measurements of thickness
3.1.3 Investigations of chemical composition
3.1.3.1 Manually prepared films
3.1.3.2 Films prepared with automatic setup
3.1.4 Investigations of sensor characteristics
3.1.5 Chapter conclusions
3.2 Nanocomposites interlinked with dithiols, amines and bisdithiocarbamates
3.2.1 Layer-by-layer growth of the DT-composites
3.2.2 Layer-by-layer growth of the OBDTC- and ODA-composites
3.2.3 Thickness measurements and density calculations
3.2.4 Absorbance measurements on nanocomposite thin films
3.2.5 Investigations of chemical composition
3.2.6 Electrical characterization and sensor measurements
3.2.7 Chapter conclusions
3.3 Impact of the oxidation processes on the sensing properties of gold nanoparticle composites
3.3.1 Preparation and oxidization of the samples
3.3.2 Investigations of chemical composition
3.3.3 Investigations of sensor characteristics
3.3.4 Chapter conclusions
4. Conclusions and outlook
Index of images
Index of tables
Appendix A
Appendix B
Appendix C
Publications related to this dissertation
Conference participations with poster
Conference participations with oral talks
Bibliography
|
Page generated in 0.3974 seconds