• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 149
  • 35
  • 23
  • 20
  • 20
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Norepinephrine and temperature regulation in goldfish

Wollmuth, Lonnie Paul 01 January 1987 (has links)
Cannulae were implanted into forebrain loci of goldfish (Carassius auratus; 45-90 g) to determine (i) the effects and site of action of intracranial norepinephrine (NE) injections on behavioral thermoregulation and (ii) the mechanism and the types of adrenoreceptors involved in the thermoregulatory effect of NE. After 30 min in a thermal gradient, implanted fish were injected with norepinephrinebitartrate salt (2.5-500 ng NE) in a total volume of 0.2 ul (carrier was 0.7% NaCl). Injections of 5, 10, 25, and 50 ng NE into the anterior aspect of the nucleus preopticus periventricularis (NPP1 Peter and Gill 1975) led to consistent, dose-dependent decreases in selected temperature. No effect on temperature selection was observed following injections of 2.5 ng NE or control injections of 100 ng tartaric acid. The effects of injections into other loci, including intraventricular injections, were dependent upon the dose and proximity to the anterior NPP1 at sites adjacent to the anterior NPP, larger doses were required, and the effects became inconsistent. At sites further removed, no effect on selected temperature was observed1 included in this category were more caudal sites within the NPP and the nucleus preopticus.
72

Long distance sprouting in the goldfish

Dethier, Sandra (Sandra Maria Dina Renée) January 1986 (has links)
No description available.
73

Aberrant Growth of Regenerating Retinotectal Axons Subsequent to Optic Tract Ablation in Goldfish

Airhart, Mark J., Shirk, James O., Edwards, Carl 20 September 1988 (has links)
This study examined the effect of optic tract ablation on retinotectal fiber regeneration in goldfish. Approximately two-thirds of the left optic tract was removed, and, at various times post lesion (10-75 days), the course of regenerating retinotectal fibers was traced using horseradish peroxidase. In all experimental animals, axons were observed regenerating through the visual pathway but at the brachia most of the fibers were channeled through the ventral brachium. We present evidence that fibers in the ventral brachium originated from ganglion cells in all regions of retina and that these fibers grew almost exclusively into ventral half tectum even though some of these fibers would normally synapse in dorsal half tectum. These observations suggest that optic tract ablation does not prevent retinal fiber regeneration but results in aberrant growth through the brachia and significant inhibition of exploratory fiber growth within the tectum.
74

Myelin debris clearance along the goldfish visual paths during Wallerian degeneration

Colavincenzo, Justin. January 1998 (has links)
No description available.
75

Intra- and interspecific food competition between a native amphibian, (Notophthalmus v. viridescens) and an exotic fish, (Carassius auratus)

Roy, Lucie H. January 1992 (has links)
No description available.
76

Regulation of prolactin gene expression in goldfish carassius auratus. / CUHK electronic theses & dissertations collection

January 2004 (has links)
Xiao Ping. / "September 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 153-176) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
77

Molecular cloning and functional characterization of a goldfish growthhormone-releasing hormone receptor

陳冠榮, Chan, Koon-wing. January 1996 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
78

Molecular studies of gonadotropin releasing hormone receptors and estrogen receptors in goldfish (Carassius auratus)

馬智謙, Ma, Chi-him, Eddie. January 2000 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
79

Goldfish (Carassius auratus) somatolactin: gene cloning and gene expression studies.

January 1999 (has links)
by Yeung Sze Mang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 123-133). / Abstracts in English and Chinese. / ACKNOWLEDGMENTS --- p.i / ABSTRACT --- p.ii / 槪論 --- p.iii / ABBREVIATIONS --- p.iv / AMINO ACIDS SHORTHAND --- p.vi / TABLE OF CONTENTS --- p.vii-x / Chapter CHAPTER 1 --- LITERATURE REVIEW / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Structural Analysis of SL --- p.1 / Chapter 1.3 --- Location of SL-producing cells and Expression of SL --- p.5 / Chapter 1.4 --- Possible Functions of SL --- p.9 / Chapter 1.4.1 --- Adaptation to various backgrounds and Intensities of Illuminations --- p.9 / Chapter 1.4.2 --- Control of Reproduction and Maturation --- p.10 / Chapter 1.4.3 --- Responses to Stress --- p.12 / Chapter 1.4.4 --- Regulation of P034- and Ca2+ Metabolism --- p.12 / Chapter 1.4.5 --- Acid - Base Balance --- p.14 / Chapter 1.4.6 --- Regulation of Energy Metabolism --- p.15 / Chapter 1.4.7 --- Regulation of Fat Metabolism --- p.15 / Chapter 1.5 --- Regulation of SL Gene Expression --- p.19 / Chapter 1.5.1 --- Pit-1 Related Gene Regulation --- p.19 / Chapter 1.5.2 --- Regulation of Hormone Secretion --- p.21 / Chapter 1.5.2.1 --- Hypothalamic Factors --- p.21 / Chapter 1.5.2.2 --- Steroids --- p.23 / Chapter 1.6 --- Aims of Thesis --- p.23 / Chapter 1.6.1 --- Identification of SLII from Goldfish (Carassius auratus) --- p.23 / Chapter 1.6.2 --- Aims --- p.27 / Chapter CHAPTER 2 --- PCR ANALYSIS OF GFSLII GENE AND ITS EXPRESSION IN GOLDFISH TISSUE / Chapter 2.1 --- Introduction --- p.28 / Chapter 2.2 --- Materials and Methods --- p.31 / Chapter 2.2.1 --- Materials --- p.31 / Chapter 2.2.2 --- Methods --- p.33 / Chapter 2.2.2.1 --- Subcloning and DNA Sequencing of the Goldfish SLII Amplified by PCR --- p.33 / Chapter 2.2.2.1.1 --- PCR Cloning of Goldfish SLII Gene --- p.33 / Chapter 2.2.2.1.2 --- Restriction Enzyme Digestion of the PCR Clones --- p.33 / Chapter 2.2.2.1.3 --- Subcloning of the Digested Fragments --- p.33 / Chapter 2.2.2.1.4 --- DNA Sequencing of the Subcloned Fragments --- p.34 / Chapter 2.2.2.2 --- Tissue Distribution Studies Using RNA Assay --- p.35 / Chapter 2.2.2.2.1 --- Tissue Preparation --- p.35 / Chapter 2.2.2.2.2 --- Total RNA Extraction --- p.35 / Chapter 2.2.2.2.3 --- Electrophoresis of RNA in Formadehyde Agarose Gel --- p.36 / Chapter 2.2.2.2.4 --- First Strand cDNA Synthesis --- p.37 / Chapter 2.2.2.2.5 --- Goldfish SLII Specific PCR --- p.37 / Chapter 2.2.2.2.6 --- PCR to Test DNA Contamination --- p.38 / Chapter 2.3 --- Results --- p.39 / Chapter 2.3.1 --- Subcloning and DNA Sequencing of the Goldfish SLII Amplified by PCR --- p.39 / Chapter 2.3.2 --- Tissue Distribution Studies Using RNA Assay --- p.40 / Chapter 2.4 --- Discussion --- p.45 / Chapter 2.4.1 --- Subcloning and DNA Sequencing of the Goldfish SLII Amplified by PCR --- p.45 / Chapter 2.4.2 --- Tissue Distribution Studies Using RNA Assay --- p.46 / Chapter CHAPTER 3 --- ANALYSIS OF GOLDFISH SLII GENE / Chapter 3.1 --- Introduction --- p.47 / Chapter 3.2 --- Materials and Methods --- p.49 / Chapter 3.2.1 --- Materials --- p.49 / Chapter 3.2.2 --- Methods --- p.54 / Chapter 3.2.2.1 --- Screening of Goldfish Genomic Library --- p.54 / Chapter 3.2.2.1.1 --- Preparation of the Plating Host --- p.54 / Chapter 3.2.2.1.2 --- Preparation of the Probe --- p.54 / Chapter 3.2.2.1.3 --- Primary Screening of Goldfish Genomic Library --- p.55 / Chapter 3.2.2.1.4 --- Isolation of the Positive Clones --- p.56 / Chapter 3.2.2.1.5 --- Phage Titering --- p.56 / Chapter 3.2.2.1.6 --- Purification of the Positive Clones --- p.57 / Chapter 3.2.2.1.7 --- Phage DNA Preparation --- p.57 / Chapter 3.2.2.1.8 --- Find out the Target Gene Size of the Positive Clones --- p.58 / Chapter 3.2.2.1.9 --- Cloning of the PCR Fragments into pUC18 Vector --- p.59 / Chapter 3.2.2.1.10 --- Checking the Cloned Insert Size --- p.60 / Chapter 3.2.2.1.11 --- Restriction Enzyme Digestion to Release the Inserts --- p.61 / Chapter 3.2.2.1.12 --- Mini prep of the Positive Clones for Further Investigations --- p.61 / Chapter 3.2.2.1.13 --- DNA Sequencing of the Positive Clones --- p.61 / Chapter 3.2.2.1.14 --- Restriction Enzyme Mapping of the Positive Clones --- p.62 / Chapter 3.2.2.1.15 --- Subcloning of Clone 2A and5A / Chapter 3.2.2.1.16 --- Determination of the Promoter Region of Clone 2A Using Universal Genome Walker Kit --- p.63 / Chapter 3.2.2.2 --- Southern Blot Analysis of Goldfish and Catfish Genomic DNA --- p.66 / Chapter 3.2.2.2.1 --- Genomic DNA Preparation from Goldfish and Catfish Tissues --- p.66 / Chapter 3.2.2.2.2 --- Restriction Enzyme Digestion of the Genomic DNA --- p.67 / Chapter 3.2.2.2.3 --- Alkaline Transfer of the Digested Genomic DNA --- p.67 / Chapter 3.2.2.2.4 --- Hybridization of the Digested Genomic DNA --- p.67 / Chapter 3.3 --- Results --- p.69 / Chapter 3.3.1 --- Screening of the Goldfish Genomic Library --- p.69 / Chapter 3.3.2 --- Mapping the Target Genes --- p.69 / Chapter 3.3.3 --- DNA Sequencing of the 2 Positive Clones --- p.69 / Chapter 3.3.4 --- Southern Blot Analysis of Goldfish and Catfish Genomic DNA --- p.81 / Chapter 3.4 --- Discussion --- p.83 / Chapter CHAPTER 4 --- EXPRESSION OF RECOMBINANT GOLDFISH SOMATOLACTIN IN ESCHERICHIA COLI (E. COLI) / Chapter 4.1 --- Introduction --- p.87 / Chapter 4.2 --- Materials and Methods --- p.89 / Chapter 4.2.1 --- Materials --- p.89 / Chapter 4.2.2 --- Methods --- p.96 / Chapter 4.2.2.1 --- Transformation of the Recombinant Protein Carrying Plasmid into E. coli. (BL21) --- p.96 / Chapter 4.2.2.2 --- Small Scale Expression of Recombinant Goldfish SLII Protein --- p.96 / Chapter 4.2.2.3 --- Large Scale Expression of Recombinant Goldfish SLII Protein --- p.97 / Chapter 4.2.2.4 --- Preparation of the Recombinant Protein for Purification --- p.99 / Chapter 4.2.2.5 --- Protein Purification Using Novagen His-Bind Resin Kit --- p.99 / Chapter 4.2.2.6 --- Production of Polyclonal Antibody in Rabbits --- p.100 / Chapter 4.2.2.7 --- Enzyme Linked Immunosorbant Assay (ELISA) --- p.101 / Chapter 4.2.2.8 --- Western Blot Analysis of the Recombinant Hormones --- p.103 / Chapter 4.3 --- Results --- p.105 / Chapter 4.3.1 --- Expression of the Recombinant Goldfish SLII --- p.105 / Chapter 4.3.2 --- Purification of the Recombinant Goldfish SLII --- p.105 / Chapter 4.3.3 --- ELISA Analysis --- p.105 / Chapter 4.3.4 --- Western Blot Analysis --- p.110 / Chapter 4.4 --- Discussion --- p.113 / Chapter 4.4.1 --- Expression of the Recombinant Goldfish SLII --- p.113 / Chapter 4.4.2 --- Purification of the Recombinant Goldfish SLII --- p.114 / Chapter 4.4.3 --- Analysis of the Recombinant Goldfish SLII --- p.114 / Chapter CHAPTER 5 --- GENERAL DISCUSSION AND CONCLUSIONS --- p.116 / REFERENCES --- p.123
80

Molecular cloning of growth hormone and growth hormone receptor in lower vertebrates.

January 2000 (has links)
by Lee Tsz On. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 148-155). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgments --- p.v / Contents --- p.vi / List of figures --- p.xii / List of table --- p.xiv / Abbreviations --- p.xv / Chapter Chapter 1 --- General Introduction / Chapter 1.1. --- Growth hormone (GH) --- p.1 / Chapter 1.1.1. --- Introduction to GH --- p.1 / Chapter 1.1.2. --- Actions of GH --- p.2 / Chapter 1.1.3. --- Structure of GH --- p.3 / Chapter 1.1.4. --- The sequence of GH --- p.5 / Chapter 1.2. --- Growth hormone receptor (GHR) --- p.6 / Chapter 1.2.1 --- Introduction to GHR --- p.6 / Chapter 1.2.2. --- Structure of the extracellular domain of GHR --- p.9 / Chapter 1.2.3. --- The regulation of GHR --- p.12 / Chapter 1.2.4. --- GHR biosynthesis --- p.13 / Chapter 1.2.5. --- Tissue distribution of GHR --- p.14 / Chapter 1.3. --- Signal transduction mechanisms of GHR --- p.15 / Chapter 1.3.1. --- Dimerization of GH and GHR complex --- p.15 / Chapter 1.3.2. --- The Jak and Stat pathway --- p.18 / Chapter 1.3.3. --- The ras and other signaling pathways --- p.20 / Chapter 1.4. --- Project aim --- p.22 / Chapter Chapter 2 --- Material and Methods / Chapter 2.1. --- Preparation of ribonuclease free reagents and apparatus --- p.23 / Chapter 2.2. --- Isolation of total RNA --- p.23 / Chapter 2.3. --- Isolation of mRNA --- p.24 / Chapter 2.4. --- Spectrophotometric quantification and qualification of DNA and RNA --- p.24 / Chapter 2.5. --- First strand cDNA synthesis --- p.25 / Chapter 2.6. --- Agarose gel electrophoresis of DNA --- p.25 / Chapter 2.7. --- Formaldehyde agarose gel electrophoresis of RNA --- p.26 / Chapter 2.8. --- Vacuum transfer of DNA to a nylon membrane --- p.26 / Chapter 2.9. --- Nucleic acids purification by MicroSpin (S-200HR) columns --- p.27 / Chapter 2.10. --- DNA radioactive labeling by nick translation --- p.27 / Chapter 2.11. --- Southern blot analysis --- p.28 / Chapter 2.12. --- Autoradiography and molecular imager --- p.28 / Chapter 2.13 . --- Linearization and dephosphorylation of plasmid DNA --- p.29 / Chapter 2.14. --- Purification of DNA from agarose using QIAEX II kit --- p.29 / Chapter 2.15. --- 3'End modification of PCR amplified DNA --- p.30 / Chapter 2.16. --- Ligation of DNA fragments to linearized vector --- p.30 / Chapter 2.17. --- Preparation of Escherichia coli competent cells --- p.31 / Chapter 2.18. --- Transformation --- p.31 / Chapter 2.19. --- Mini preparation of plasmid DNA --- p.32 / Chapter 2.20. --- Maxi preparation of plasmid DNA --- p.34 / Chapter 2.21 . --- PCR sequencing --- p.35 / Chapter 2.22. --- cDNA library screening --- p.36 / Chapter 2.23. --- Preparation and sterilization of culture medium --- p.38 / Chapter 2.24. --- Preparation of frozen stock of culture cells --- p.39 / Chapter 2.25. --- Cell passage of CHO-Kl --- p.39 / Chapter 2.26. --- Counting of cells --- p.40 / Chapter 2.27. --- Proliferation assay performed on CHO-K1 cells (MTT method) --- p.40 / Chapter 2.28. --- Luciferase assay --- p.41 / Chapter 2.29. --- SDS-PAGE preparation --- p.42 / Chapter 2.30. --- SDS-PAGE analysis of proteins --- p.42 / Chapter 2.31 . --- Recombinant protein expression --- p.43 / Chapter 2.32. --- Small scale purification of recombinant proteins --- p.44 / Chapter 2.33. --- Restriction digestion of DNA --- p.45 / Chapter 2.34. --- Purification of PCR product using QIAquick PCR purification kit --- p.45 / Chapter 2.35. --- TA cloning of PCR fragment --- p.45 / Chapter 2.36. --- Transfection of plasmid into CHO-K1 cells --- p.46 / Chapter 2.37. --- Sources of hormones --- p.46 / Chapter 2.38. --- Buffer and reagents --- p.47 / Chapter Chapter 3 --- "Cloning, expression and tissue distribution of Xenopus laevis GHR" / Chapter 3.1. --- Introduction --- p.50 / Chapter 3.2. --- Materials and methods --- p.51 / Chapter 3.2.1. --- Molecular cloning of xGHR cDNA / Chapter 3.2.1.1. --- Animals and tissues --- p.51 / Chapter 3.2.1.2. --- Reverse transcribed´ؤpolymerase chain reaction (RT-PCR) --- p.51 / Chapter 3.2.1.3. --- Subcloning of PCR amplified DNA fragment --- p.53 / Chapter 3.2.1.4. --- Library screening of xGHR --- p.53 / Chapter 3.2.1.5. --- 5 'Rapid amplification of cDNA end (5' RACE) --- p.55 / Chapter 3.2.2. --- Tissue distribution of xGHR / Chapter 3.2.2.1. --- Animals and tissues --- p.56 / Chapter 3.2.2.2. --- RT-PCR and Southern blot --- p.56 / Chapter 3.2.3. --- Eukarytoic expression of xGHR and functional assay of xGHR / Chapter 3.2.3.1. --- Subcloning ofxGHR into pRc/CMV --- p.57 / Chapter 3.2.3.2. --- Expression of xGHR in CHO-K1 cell --- p.58 / Chapter 3.2.3.3. --- Proliferation assay --- p.58 / Chapter 3.3. --- Results --- p.60 / Chapter 3.3.1. --- RT-PCR of the partial fragment --- p.60 / Chapter 3.3.2. --- Library screening of xGHR cDNA library --- p.61 / Chapter 3.3.3. --- 5' RACE --- p.64 / Chapter 3.3.4. --- The full-length cDNA sequence of xGHR --- p.65 / Chapter 3.3.5. --- Tissue distribution of xGHR mRNA --- p.69 / Chapter 3.3.6. --- Functional assay of xGHR in CHO-K1 cells --- p.71 / Chapter 3.4. --- Discussion --- p.74 / Chapter Chapter 4 --- Cloning and expression of Xenopus laevis GH-A and GH-B / Chapter 4.1. --- Introduction --- p.78 / Chapter 4.2. --- Materials and Methods --- p.79 / Chapter 4.2.1. --- PCR amplification of xGH-A and xGH-B partial fragments --- p.79 / Chapter 4.2.2. --- cDNA library screening of xGH-A and xGH-B --- p.80 / Chapter 4.2.3. --- Rapid amplification of cDNA ends of xGH-B / Chapter 4.2.3.1. --- 3'RACE --- p.80 / Chapter 4.2.3.2. --- 5'RACE --- p.81 / Chapter 4.2.4. --- Expression of xGH-A and xGH-B / Chapter 4.2.4.1 --- Construction of the expression vector --- p.84 / Chapter 4.2.4.2. --- Protein expression of xGH-A and xGH-B --- p.85 / Chapter 4.2.5. --- Purification of recombinant xGH-A and xGH-B --- p.85 / Chapter 4.3. --- Results --- p.87 / Chapter 4.3.1. --- PCRof xGH-A and xGH-B partial fragment --- p.87 / Chapter 4.3.2. --- Library screening of xGH-A --- p.87 / Chapter 4.3.3. --- 5' RACE and 3' RACE of xGH-B --- p.91 / Chapter 4.3.4. --- Sequence analysis of xGH-A and xGH-B --- p.93 / Chapter 4.3.5. --- Protein expression and purification of recombinant xGH-A and xGH-B --- p.100 / Chapter 4.4. --- Discussion --- p.102 / Chapter Chapter 5 --- Molecular cloning and function expression of goldfish GHR / Chapter 5.1. --- Introduction --- p.105 / Chapter 5.2. --- Materials and methods --- p.106 / Chapter 5.2.1. --- Molecular cloning of the partial fragment of gfGHR / Chapter 5.2.1.1. --- Primer design --- p.106 / Chapter 5.2.1.2. --- Library PCR of gfGHR partial fragment --- p.108 / Chapter 5.2.2. --- Library PCR of gfGHR cDNA sequence --- p.110 / Chapter 5.2.3. --- Determination of 3' End and 5' End sequences of gfGHR cDNA --- p.112 / Chapter 5.2.4. --- Tissue distribution of gfGHR / Chapter 5.2.4.1. --- Animals and tissues --- p.115 / Chapter 5.2.4.2. --- Semi-quantitative R T-PCR --- p.115 / Chapter 5.2.5. --- Functional expression of gfGHR in CHO-K1 cell / Chapter 5.2.5.1. --- Construction of an expression vector containing gfGHR --- p.116 / Chapter 5.2.5.2. --- Functional assay of gfGHR expression on CHO-K1 cells --- p.117 / Chapter 5.2.5.3. --- Proliferation assay --- p.118 / Chapter 5.2.5.4. --- Spi luciferase assay --- p.118 / Chapter 5.3. --- Results --- p.120 / Chapter 5.3.1. --- PCR amplification of the partial sequence of gfGHR --- p.120 / Chapter 5.3.2. --- The library PCR of gfGHR cDNA sequence --- p.122 / Chapter 5.3.3. --- The sequence of gfGHR --- p.124 / Chapter 5.3.4. --- Tissue distribution of gfGHR --- p.131 / Chapter 5.3.5. --- Proliferation assay --- p.133 / Chapter 5.3.6. --- Spi luciferase assay --- p.135 / Chapter 5.4. --- Discussion --- p.137 / Chapter Chapter 6 --- General discussion and future works --- p.145 / References --- p.148 / Appendix --- p.156

Page generated in 0.0334 seconds