• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 149
  • 35
  • 23
  • 20
  • 20
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Telencephalic Terminals in the Major Retinal Synaptic Lamina of the Goldfish Optic Tectum

Airhart, Mark J., Kriebel, Richard M. 17 June 1985 (has links)
Light and electron microscopic degeneration studies were used to examine the telencephalotectal pathway in goldfish. Both techniques showed that each telencephalic lobe sent bilateral projections to several tectal laminae. Degenerating synaptic terminals and fibers were observed in the major retinal projection lamina as well as in other tectal laminae. The terminals contained round to oval synaptic vesicles, asymmetric synapses and contacted relatively small postsynaptic profiles.
112

Non-neuronal cell response to axonal damage in the visual paths of goldfish

Ghali, Rodney. January 1996 (has links)
No description available.
113

Hormonal regulation and promoter analysis of the follicle-stimulating hormone b-subunit gene (FSHb)of goldfish, carassius auratus.

January 2002 (has links)
Ko Nga Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 98-131). / Abstracts in English and Chinese. / Abstract (in English) --- p.ii / Abstract (in Chinese) --- p.v / Acknowledgements --- p.vii / Table of Contents --- p.ix / List of Figures --- p.xiv / List of Tables --- p.xvii / Symbols and Abbreviations --- p.xviii / Scientific Names --- p.xxi / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Gonadotropins --- p.1 / Chapter 1.1.1 --- Structure --- p.1 / Chapter 1.1.2 --- Function --- p.3 / Chapter 1.1.3 --- Regulation --- p.5 / Chapter 1.1.3.1 --- Hypothalamic regulators (GnRH) --- p.5 / Chapter 1.1.3.2 --- Endocrine regulators from gonads (steroids) --- p.7 / Chapter 1.1.3.3 --- Paracrine regulators (activin) --- p.9 / Chapter 1.1.4 --- Promoter analysis --- p.9 / Chapter 1.2 --- Activin Family of Growth Factors --- p.12 / Chapter 1.2.1 --- Activin --- p.12 / Chapter 1.2.1.1 --- Structure --- p.12 / Chapter 1.2.1.2 --- Function --- p.13 / Chapter 1.2.1.3 --- Signaling --- p.15 / Chapter 1.2.2 --- Follistatin --- p.16 / Chapter 1.2.2.1 --- Structure --- p.16 / Chapter 1.2.2.2 --- Function --- p.17 / Chapter 1.3 --- Objectives --- p.18 / Chapter Chapter 2 --- Establishment and Characterization of Stable LβT2 Cell Lines Containing and Expressing SEAP Driven by the Goldfish FSHβ Promoter / Chapter 2.1 --- Introduction --- p.29 / Chapter 2.2 --- Materials and Methods --- p.31 / Chapter 2.2.1 --- Construction of expression plasmid --- p.31 / Chapter 2.2.2 --- Cell culture --- p.32 / Chapter 2.2.3 --- Cotransfection of LβT2 cells --- p.32 / Chapter 2.2.4 --- G418 selection of transfected LpT2 cells --- p.33 / Chapter 2.2.5 --- SEAP reporter gene assay --- p.33 / Chapter 2.2.6 --- Cloning of pSEAP/gfFSHβ promoter and pBK- CMV-transfected LβT2 cells by limited dilution --- p.34 / Chapter 2.2.7 --- Extraction of genomic DNA --- p.34 / Chapter 2.2.8 --- Isolation of total RNA --- p.35 / Chapter 2.2.9 --- Reverse transcription-polymerase chain reaction (RT-PCR) --- p.35 / Chapter 2.3 --- Results --- p.36 / Chapter 2.3.1 --- Optimization of G418 concentration for selection --- p.36 / Chapter 2.3.2 --- Expression of SEAP reporter gene by pSEAP/gfFSHβ promoter and pBK-CMV-transfected LβT2 cells --- p.37 / Chapter 2.3.3 --- Establishment of LβT2 cell lines that contain a functional gfFSHp promoter --- p.37 / Chapter 2.3.4 --- Characterization of LβT2#23 that contains a functional gfFSHβ promoter --- p.38 / Chapter 2.4 --- Discussion --- p.39 / Chapter Chapter 3 --- Hormonal Regulation of Goldfish Follicle-Stimulating Hormone β (FSHβ) Promoter Activity in LpT2#23 Cells / Chapter 3.1 --- Introduction --- p.52 / Chapter 3.2 --- Materials and Methods --- p.54 / Chapter 3.2.1 --- Cell culture --- p.55 / Chapter 3.2.2 --- Drug treatment --- p.56 / Chapter 3.2.3 --- SEAP reporter gene assay --- p.56 / Chapter 3.2.4 --- Isolation of total RNA --- p.57 / Chapter 3.2.5 --- Reverse transcription-polymerase chain reaction (RT-PCR) --- p.57 / Chapter 3.2.6 --- Data analysis --- p.58 / Chapter 3.3 --- Results --- p.59 / Chapter 3.3.1 --- Effects of goldfish activin on FSHβ promoter --- p.59 / Chapter 3.3.2 --- Blockade of activin effects by follistatin --- p.59 / Chapter 3.3.3 --- Effects of different hormones and steroids on FSHβ promoter --- p.60 / Chapter 3.4 --- Discussion --- p.61 / Chapter Chapter 4 --- Promoter Analysis for the Activin Responsive Element (ARE) in the Goldfish Follicle-Stimulating Hormone β (FSHβ) Gene / Chapter 4.1 --- Introduction --- p.71 / Chapter 4.2 --- Materials and Methods --- p.74 / Chapter 4.2.1 --- Generation of SEAP reporter plasmids containing the gfFSHβ promoter of different lengths --- p.74 / Chapter 4.2.2 --- PCR screening and restriction analysis --- p.75 / Chapter 4.2.3 --- Midiprep --- p.76 / Chapter 4.2.4 --- Cell culture --- p.77 / Chapter 4.2.5 --- Transfection of the pSEAP/gfFSHβ promoter constructs into LβT2 cells --- p.77 / Chapter 4.2.6 --- Activin treatment --- p.77 / Chapter 4.2.7 --- SEAP assay --- p.78 / Chapter 4.3 --- Results --- p.78 / Chapter 4.3.1 --- Subcloning of the gfFSHβ promoter of decreasing length into SEAP reporter vector --- p.78 / Chapter 4.3.2 --- Activin stimulation of the pSEAP/gfFSHβ promoter constucts in LβT2 cells --- p.79 / Chapter 4.4 --- Discussion --- p.80 / Chapter Chapter 5 --- General Discussion / Chapter 5.1 --- Overview --- p.92 / Chapter 5.2 --- Contribution of the present research --- p.95 / Chapter 5.2.1 --- Establishment of stable LβT2 cell lines containing and expressing SEAP driven by gfFSHβ promoter --- p.95 / Chapter 5.2.2 --- Hormonal regulation of the gfFSHβ promoterin LβT2#23 cells --- p.95 / Chapter 5.2.3 --- Identification of the activin responsive element (ARE) on the gfFSHβ promoter --- p.96 / Chapter 5.3 --- Future research direction --- p.96 / References --- p.98
114

Cloning and characterization of follistatin in the goldfish, Carassius auratus.

January 2003 (has links)
Cheng Fu Yip Gheorghe. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 97-116). / Abstracts in English and Chinese. / Acknowledgement --- p.I / Abstract (in English) --- p.III / Abstract (in Chinese) --- p.V / Table of Content --- p.VII / Symbols and Abbreviations --- p.XII / Scientific Names --- p.XIV / List of Tables --- p.XV / List of Figures --- p.XVI / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Gonadotropin / Chapter 1.1.1 --- Structure --- p.2 / Chapter 1.1.2 --- Function --- p.3 / Chapter 1.1.3 --- Regulation --- p.4 / Chapter 1.1.3.1 --- Neuroendocrine and endocrine regulation of GTHs --- p.4 / Chapter 1.1.3.1.1 --- Hypothalamic neuropeptides and neurotransmitters --- p.6 / Chapter 1.1.3.1.2 --- Gonadal steroids --- p.7 / Chapter 1.1.3.2 --- Paracrine regulation of GTH --- p.8 / Chapter 1.2 --- Activin / Chapter 1.2.1 --- Structure --- p.8 / Chapter 1.2.2 --- Function --- p.9 / Chapter 1.2.3 --- Regulation of activin activity --- p.12 / Chapter 1.2.3.1 --- Intracellular blockade of activin signaling by Smad7 --- p.12 / Chapter 1.2.3.2 --- Extracellular control of activin access --- p.13 / Chapter 1.2.3.2.1 --- Inhibin --- p.13 / Chapter 1.2.3.2.2 --- Activin-binding protein --- p.14 / Chapter 1.3 --- Follistatin / Chapter 1.3.1 --- Structure --- p.14 / Chapter 1.3.2 --- Function --- p.16 / Chapter 1.3.3 --- Regulation in the pituitary --- p.19 / Chapter 1.4 --- Objectives of the Present Study --- p.20 / Chapter Chapter 2 --- Cloning and Recombinant Production of Goldfish Follistatin / Chapter 2.1 --- Introduction --- p.24 / Chapter 2.2 --- Materials and Methods / Chapter 2.2.1 --- Reagents --- p.26 / Chapter 2.2.2 --- Animal --- p.26 / Chapter 2.2.3 --- Extraction of total RNA and reverse transcription --- p.27 / Chapter 2.2.4 --- Cloning of full-length cDNA encoding goldfish follistatin --- p.27 / Chapter 2.2.5 --- Sequencing of the cDNA --- p.29 / Chapter 2.2.6 --- Distribution of follistatin mRNA in different tissues --- p.29 / Chapter 2.2.7 --- Production of rgFS --- p.30 / Chapter 2.2.8 --- RT-PCR of the rgFS-positive clones --- p.34 / Chapter 2.2.9 --- Extraction of genomic DNA from rgFS-positive clones --- p.34 / Chapter 2.2.10 --- Functional analysis of rgFS --- p.35 / Chapter 2.2.11 --- Data Analysis --- p.37 / Chapter 2.3 --- Results / Chapter 2.3.1 --- Cloning and sequence analysis of goldfish follistatin --- p.37 / Chapter 2.3.2 --- Tissue distribution of follistatin mRNA in the goldfish --- p.39 / Chapter 2.3.3 --- Production and bioassay of rgFS --- p.43 / Chapter 2.4 --- Discussion --- p.47 / Chapter Chapter 3 --- Function and Regulation of Follistatin in the Goldfish Pituitary; Evidence for an Intrinsic Activin/Follistatin Regulatory Feedback Loop / Chapter 3.1 --- Introduction --- p.54 / Chapter 3.2 --- Materials and Methods / Chapter 3.2.1 --- Reagents --- p.57 / Chapter 3.2.2 --- Animals --- p.57 / Chapter 3.2.3 --- Primary culture of dispersed pituitary cells --- p.57 / Chapter 3.2.4 --- RNA extraction and reverse transcription --- p.58 / Chapter 3.2.5 --- Ovariectomy on pituitary follistatin expression --- p.5 9 / Chapter 3.2.6 --- Seasonal expression profile of follistatin --- p.59 / Chapter 3.2.7 --- Validation of semi-quantitative RT-PCR assays --- p.61 / Chapter 3.2.8 --- Real-time PCR for assay on follistatin and β-actin expression --- p.61 / Chapter 3.2.9 --- Data analysis --- p.63 / Chapter 3.3 --- Results / Chapter 3.3.1 --- Expression of follistatin in the goldfish pituitary --- p.64 / Chapter 3.3.2 --- Validation of semi-quantitative RT-PCR assay --- p.64 / Chapter 3.3.3 --- Activin regulation of pituitary follistatin --- p.64 / Chapter 3.3.4 --- Effects of sex steroids on pituitary follistatin expression --- p.69 / Chapter 3.3.5 --- Effect of GnRH on follistatin expression in the pituitary --- p.74 / Chapter 3.3.6 --- Effect of intracellular cAMP level on pituitary follistatin expression --- p.74 / Chapter 3.3.7 --- Seasonal variation profile of goldfish pituitary follistatin --- p.78 / Chapter 3.4 --- Discussion --- p.78 / Chapter Chapter 4 --- General Discussion / Chapter 4.1 --- Overview --- p.89 / Chapter 4.2 --- Contribution of the Present Study / Chapter 4.2.1 --- Cloning of full-length goldfish follistatin cDNA --- p.91 / Chapter 4.2.2 --- Establishment of stable cell line for expression of rgFS --- p.92 / Chapter 4.2.3 --- Evidence for the presence of intrinsic feedback loop of activin in the goldfish pituitary --- p.92 / Chapter 4.2.4 --- Modulation of follistatin expression in the pituitary by sex steroids --- p.93 / Chapter 4.2.5 --- Conclusions --- p.93 / Chapter 4.3 --- Future Prospects / Chapter 4.3.1 --- Production of rgFS --- p.95 / Chapter 4.3.2 --- Regulation of activin-follistatin system in the pituitary --- p.95 / Reference --- p.96
115

Hormonal regulation of vitellogenin expression in the goldfish.

January 2002 (has links)
Pang Yee Man Flora. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 111-128). / Abstracts in English and Chinese. / Abstract (in English) --- p.ii / Abstract (in Chinese) --- p.iv / Acknowledgement --- p.v / Table of Contents --- p.vii / List of Figures --- p.xii / Symbols and Abbreviations --- p.xv / Scientific Names --- p.xvii / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Vitellogenesis --- p.2 / Chapter 1.2 --- Vitellogenin --- p.3 / Chapter 1.2.1 --- Structure --- p.3 / Chapter 1.2.2 --- Vitellogenin synthesis in the liver --- p.4 / Chapter 1.3 --- Regulation of vitellogenin synthesis --- p.5 / Chapter 1.3.1 --- Estradiol --- p.5 / Chapter 1.3.1.1 --- Mechanism of action --- p.6 / Chapter 1.3.1.2 --- Estradiol-stimulated vitellogenin expression --- p.7 / Chapter 1.3.1.3 --- Memory effects --- p.9 / Chapter 1.3.2 --- Testosterone --- p.10 / Chapter 1.3.3 --- Cortisol --- p.13 / Chapter 1.3.4 --- Progesterone --- p.14 / Chapter 1.3.5 --- Growth Hormone --- p.14 / Chapter 1.3.6 --- Prolactin --- p.15 / Chapter 1.3.7 --- Thyroid hormone --- p.15 / Chapter 1.4 --- Growth factors --- p.16 / Chapter 1.4.1 --- Activin --- p.16 / Chapter 1.4.1.1 --- Structure --- p.16 / Chapter 1.4.1.2 --- Functions --- p.17 / Chapter 1.4.2 --- Epidermal growth factors (EGF) --- p.18 / Chapter 1.4.2.1 --- Structure --- p.18 / Chapter 1.4.2.2 --- Functions --- p.19 / Chapter 1.5 --- Objectives of the present study --- p.20 / Chapter Chapter 2 --- Expression of Goldfish Vitellogenin in vivo and in vitro --- p.25 / Chapter 2.1 --- Introduction --- p.25 / Chapter 2.2 --- Materials and Methods --- p.26 / Chapter 2.2.1 --- Materials --- p.26 / Chapter 2.2.2 --- Sequencing --- p.27 / Chapter 2.2.3 --- Cell culture --- p.28 / Chapter 2.2.4 --- RNA extraction --- p.29 / Chapter 2.2.5 --- Northern hybridization --- p.31 / Chapter 2.2.6 --- Slot blot hybridization --- p.32 / Chapter 2.2.7 --- Data analysis --- p.33 / Chapter 2.2.8 --- SDS-PAGE analysis --- p.33 / Chapter 2.2.9 --- in situ hybridization --- p.34 / Chapter 2.3 --- Results --- p.37 / Chapter 2.3.1 --- Validation of vitellogenin mRNA detection --- p.37 / Chapter 2.3.2 --- Basal and estradiol-stimulated vitellogenin expression and production invivo --- p.38 / Chapter 2.3.3 --- Localization of vitellogenin expression in the liver --- p.39 / Chapter 2.3.4 --- Expression of vitellogenin in vitro --- p.40 / Chapter 2.4 --- Discussion --- p.54 / Chapter Chapter 3 --- Effects of Steroids on the Expression of Goldfish Vitellogenin in vitro --- p.60 / Chapter 3.1 --- Introduction --- p.60 / Chapter 3.2 --- Materials and Methods --- p.62 / Chapter 3.2.1 --- Materials --- p.62 / Chapter 3.2.2 --- Animal --- p.62 / Chapter 3.2.3 --- Primary culture of dispersed hepatic cells --- p.62 / Chapter 3.2.4 --- Drug treatment --- p.64 / Chapter 3.2.5 --- Total RNA isolation --- p.64 / Chapter 3.2.6 --- Messenger RNA isolation --- p.65 / Chapter 3.2.7 --- Slot blot analysis --- p.66 / Chapter 3.2.8 --- Data analysis --- p.68 / Chapter 3.2.9 --- Reverse transcription-polymerase chain reaction (RT-PCR) --- p.68 / Chapter 3.2.10 --- Cloning of aromatase cDNA --- p.69 / Chapter 3.2.11 --- Sequencing --- p.70 / Chapter 3.3 --- Results --- p.71 / Chapter 3.3.1 --- Effect of 17-β estradiol on vitellogenin mRNA expression --- p.71 / Chapter 3.3.2 --- Effect of testosterone on vitellogenin mRNA expression --- p.71 / Chapter 3.3.3 --- Detection of aromatase mRNA expression in the liver by RT-PCR --- p.72 / Chapter 3.3.4 --- Effect of aromatase inhibitors on testosterone-stimulated vitellogenin expression --- p.73 / Chapter 3.4 --- Discussion --- p.81 / Chapter Chapter 4 --- Effects of Epidermal Growth Factor (EGF) and Activin on the Expression of Vitellogenin in the Goldfish Hepatic Cells in vitro --- p.86 / Chapter 4.1 --- Introduction --- p.86 / Chapter 4.2 --- Materials and Methods --- p.88 / Chapter 4.2.1 --- Materials --- p.88 / Chapter 4.2.2 --- Primary culture of dispersed hepatic cells --- p.89 / Chapter 4.2.3 --- Slot blot analysis --- p.91 / Chapter 4.2.4 --- Data analysis --- p.91 / Chapter 4.3 --- Results --- p.92 / Chapter 4.3.1 --- Effect of activin on vitellogenin mRNA expression --- p.92 / Chapter 4.3.2 --- Effect of EGF and TGF-α on vitellogenin mRNA expression --- p.93 / Chapter 4.4 --- Discussion --- p.99 / Chapter Chapter 5 --- General Discussion --- p.104 / Chapter 5.1 --- Overview --- p.104 / Chapter 5.2 --- Contribution of the present study --- p.106 / Chapter 5.2.1 --- Expression of goldfish vitellogenin in vivo and in vitro --- p.106 / Chapter 5.2.2 --- Effects of steroids on the expression of goldfish vitellogenin in vitro --- p.106 / Chapter 5.2.3 --- Effects of EGF and activin on the expression of vitellogenin in the goldfish hepatic cells in vitro --- p.107 / Chapter 5.3 --- Future prospects --- p.108
116

Molecular characterization of two estrogen receptor (ER) alpha subtype cDNAs from goldfish (Carassius auratus) and cross-talk between ERalpha and prolactin-activated signal transducers and activators of transcription (STAT) 5a. / Molecular characterization of two estrogen receptor (ER) α subtype cDNAs from Goldfish (carassius auratus) : and cross-talk between ER α and prolactin activated signal traducers and activitors of transcription (STAT) 5a / CUHK electronic theses & dissertations collection

January 2003 (has links)
"June 2003." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (p. 162-187). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
117

Differential regulation of gonadotropin expression in the goldfish, Carassius auratus, by hypothalamic dopamine and pituitary activin.

January 2001 (has links)
Yuen Chi Wai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 84-106). / Abstracts in English and Chinese. / Abstract (in English) --- p.ii / Abstract (in Chinese) --- p.iv / Acknowledgement --- p.vi / Table of Contents --- p.vii / List of Figures --- p.xii / Symbols and Abbreviations --- p.xv / Scientific names --- p.xvii / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Pituitary --- p.1 / Chapter 1.2 --- Gonadotropins (GTHs) --- p.3 / Chapter 1.2.1 --- Structure --- p.3 / Chapter 1.2.2 --- Function --- p.5 / Chapter 1.2.3 --- Regulation --- p.7 / Chapter 1.2.3.1 --- Neuroendocrine hypothalamic regulators --- p.9 / Chapter 1.2.3.1.1 --- Gonadotropin-releasing hormone (GnRH) --- p.9 / Chapter 1.2.3.1.2 --- Dopamine (DA) --- p.11 / Chapter 1.2.3.2 --- Endocrine regulators from the gonads --- p.12 / Chapter 1.2.3.2.1 --- Gonadal steroids (T and E2) --- p.12 / Chapter 1.2.3.2.2 --- Negative steroid effect on pituitary GTH regulation --- p.12 / Chapter 1.2.3.2.3 --- Positive steroid effect on pituitary GTH regulation --- p.13 / Chapter 1.2.3.3 --- Paracrine regulators from within the pituitary --- p.14 / Chapter 1.3 --- Activin --- p.14 / Chapter 1.3.1 --- Structure --- p.14 / Chapter 1.3.2 --- Function --- p.16 / Chapter 1.4 --- Follistatin (FS) --- p.17 / Chapter 1.4.1 --- Structure --- p.17 / Chapter 1.4.2 --- Function --- p.19 / Chapter 1.5 --- Temporal Variations in the GTH Expressional and Releasing Profile and Sex Steroid Level in the Goldfish --- p.19 / Chapter 1.5.1 --- Hormone changes during annual cycle --- p.20 / Chapter 1.5.2 --- Hormone changes during ovulatory cycle --- p.21 / Chapter 1.6 --- Objectives of the Present Study --- p.23 / Chapter Chapter 2 --- "Effects of Dopamine on the Expression of Gonadotropin (GTH) Subunits in the Dispersed Pituitary Cells of the Goldfish, Carassius auratus" --- p.26 / Chapter 2.1 --- Introduction --- p.26 / Chapter 2.2 --- Materials and Methods --- p.27 / Chapter 2.2.1 --- Materials --- p.27 / Chapter 2.2.2 --- Primary culture of dispersed goldfish pituitary cells --- p.28 / Chapter 2.2.3 --- mRNA analysis --- p.29 / Chapter 2.2.4 --- Data analysis --- p.30 / Chapter 2.3 --- Results --- p.30 / Chapter 2.3.1 --- Effects of DA on GTH-Iβ and GTH-IIβ expression --- p.30 / Chapter 2.3.2 --- Effects of DA D1 and D2 agonists on GTH-Iβ expression --- p.33 / Chapter 2.3.3 --- Effects of DA D1 and D2 antagonists on DA- inhibited GTH-Iβ expression --- p.33 / Chapter 2.3.4 --- Effects of α-adrenergic agonists on GTH-Iβ expression --- p.33 / Chapter 2.4 --- Discussion --- p.37 / Chapter Chapter 3 --- Seasonal Variation of Activin-regulated Goldfish Pituitary GTH-Ip and GTH-IIβ Expression and Evidence for the Involvement of Gonadal Steroids --- p.40 / Chapter 3.1 --- Introduction --- p.40 / Chapter 3.2 --- Materials and Methods --- p.42 / Chapter 3.2.1 --- Materials --- p.42 / Chapter 3.2.2 --- Gonadectomy of the goldfish --- p.42 / Chapter 3.2.3 --- Primary culture of dispersed pituitary cells --- p.43 / Chapter 3.2.4 --- mRNA analysis --- p.43 / Chapter 3.2.5 --- Data analysis --- p.44 / Chapter 3.3 --- Results --- p.44 / Chapter 3.3.1 --- Effects of goldfish activin B on the expression of GTH-Iβ and GTH-IIβ --- p.44 / Chapter 3.3.2 --- Seasonal variation of activin-regulated expression of GTH-Iβ and GTH-IIβ --- p.45 / Chapter 3.3.3 --- Effects of gonadectomy on basal and activin- regulated expression of GTH-Iβ and GTH-IIβ --- p.45 / Chapter 3.3.4 --- Effects of sex steroids on basal and activin- regulated expression of GTH-Iβ and GTH-IIβ in vitro --- p.50 / Chapter 3.4 --- Discussion --- p.57 / Chapter Chapter 4 --- Evidence for the Autocrine/Paracrine Regulation of Gonadotropin Expression by Activin in the Goldfish Pituitary --- p.61 / Chapter 4.1 --- Introduction --- p.61 / Chapter 4.2 --- Materials and Methods --- p.63 / Chapter 4.2.1 --- RNA isolation --- p.63 / Chapter 4.2.2 --- Reverse transcription-polymerase chain reaction (RT-PCR) --- p.63 / Chapter 4.2.3 --- Primary culture of goldfish pituitary cells --- p.63 / Chapter 4.2.4 --- Slot-blot analysis --- p.64 / Chapter 4.2.5 --- Data analysis --- p.64 / Chapter 4.3 --- Results --- p.65 / Chapter 4.3.1 --- Expression of activin βB subunit and activin type IEB receptor in the goldfish pituitary --- p.65 / Chapter 4.3.2 --- Effects of human activin A on goldfish GTH-Iβ and GTH-IIβ expression --- p.65 / Chapter 4.3.3 --- Effects of follistatin on basal and activin- regulated GTH-Iβ and GTH-IIβ expression --- p.69 / Chapter 4.4 --- Discussion --- p.69 / Chapter Chapter 5 --- General Discussion --- p.77 / Chapter 5.1 --- Overview --- p.77 / Chapter 5.2 --- Contribution of the Present Study --- p.78 / Chapter 5.2.1 --- Dopamine as a potential neuroendocrine regulator in the differential regulation of GTH-Iβ and GTH-IIβ expression --- p.78 / Chapter 5.2.2 --- Seasonal variation of the effects of activin on GTH-Iβ and GTH-IIβ expression --- p.79 / Chapter 5.2.3 --- Autocrine/paracrine regulation of GTH expression by activin --- p.79 / Chapter 5.3 --- Future Prospects --- p.81 / References --- p.84
118

Lethal Concentrations and Detoxification Time of Toxaphene For Goldfish, Gambusia and Rainbow Trout

Workman, Gar W. 01 May 1959 (has links)
In the past few years the Utah Fish and Game Department, as well as the fish and game departments of other states, has been spending fisheries money for fish eradication on both lakes and streams. The Utah Fish and Game Department recently suggested to the University that research be initiated on the subject of toxaphene as a fish poison. Consequently, a better insight into conditions that exist for a given water type could be developed. To date there is a very small amount of material written on toxaphene. This is due primarily to the fact that toxaphene was not developed until the 19hO's. Toxaphene is used mainly as an insecticide. Such crops as tomatoes, beans, alfalfa, clover and cotton are protected by the use of toxaphene (Hudd and Genelly, 1956).
119

Factors limiting the colonization success of an introduced exotic fish (Carassius auratus)

Richardson, Michael John January 1996 (has links)
No description available.
120

Swimming in four goldfish (Carassius auratus) morphotypes: understanding functional design and performance through artificial selection

Li, Jason 05 1900 (has links)
Although artificially selected goldfish exhibit swimming performance decrements, with the most derived morphotypes more affected, they can be utilized to explore functional design and movement pattern principles in aquatic vertebrates. Drag, steady swimming kinematics (tailbeat frequency, amplitude, stride length), energetics (standard and active metabolic rate), fast-start performance (average and maximum velocity and acceleration), stability in yaw and roll and propulsive muscle ultrastructural characteristics (mitochondrial volume density and spacing, myofibril diameter and capillary to fibre ratio in red and white muscle) were measured for four morphotypes: common, comet, fantail and eggfish, of comparable length (≈ 5 cm). A performance “pairing” (common and comet; fantail and eggfish) was a recurrent theme for most performance parameters. Vertebral numbers (30), segment lengths (≈ 0.85 mm) and standard metabolic rates (≈ 140 mg O2 kg-1 hr-1) are exceptions where values are the same. Fantail and eggfish drag and drag coefficients (referenced to frontally projected area ≈ 0.6 - 0.9) were higher (requiring more thrust at any given velocity) than those for the more streamlined common and comet (≈ 0.3 - 0.6; P < 0.05). This is reflected in kinematics; tailbeat frequency and stride length at any given velocity for the common and comet are lower and higher respectively than that of the fantail and eggfish (P < 0.05). Common and comet fatigue times are not significantly different from that of their ancestor, Crucian carp (P > 0.05), and are lower than those of the fantail and eggfish (P < 0.05). The cost of transport of the common and comet (≈ 0.6 mg O2 kg-1 m-1) is accurately predicted from the mass scaling relationship for fish (P > 0.05), but values for the fantail and eggfish (≈ 1.3 mg O2 kg-1 m-1) are not (P < 0.05). Eggfish steady swimming (dorsal fin absent) was characterized by rolling and yawing motions associated with significant energy losses. Common and comet fast-start performance (average velocity ≈ 0.45 m s-1, maximum velocity ≈ 1.2 m s-1, average acceleration ≈ 7.5 m s-2, maximum acceleration ≈ 35 m s-2) was similar to that of other locomotor generalists (e.g. trout). Eggfish maximum acceleration (≈ 5 m s-2) is poor due to the absence of inertial and lifting contributions to thrust from the dorsal fin and energy wasting rolling motions. Artificially selected fish can bear upon fitness related adaptations associated with form and movement, providing insights into the “performance envelope” of natural systems subject to ecological speciation.

Page generated in 0.0346 seconds