• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of Gon4-like as a factor that is essential for B lymphopoiesis and capable of mediating transcriptional repression

Lu, Ping 01 December 2010 (has links)
The B cell population is one of the key components of the adaptive immune system, which protects the host from a tremendous variety of pathogens by producing antibodies. B cells develop from hematopoietic stem cells through a pathway known as B lymphopoiesis. This is a process accompanied by intensive gene expression reprogramming. By the end, genes appropriate for the B lineage are activated and those that are not are continuously repressed. The regulation of lineage gene expression is conferred by a network of transcriptional regulators. Although some key components have been defined, more factors, especially those orchestrating the repression of non-B lineage genes, remain to be identified. Chemically induced mutagenesis is a potent way of identifying genes with critical biological functions. Injection of n-ethyl-n-nitrosourea, a mutagen, has generated a unique point mutation in the mouse Gon4-like (Gon4l) gene that specifically causes a loss of peripheral B cells while maintaining the T cell population. The mutation is therefore named Justy for Just T cells. The goal of this thesis project is to analyze the Justy mice and provide insights into the mechanisms underlying the regulation of B lymphopoiesis. The work presented here demonstrates that the protein encoded by Gon4l is essential for early B lymphopoiesis, which is likely through the repression of non-B lineage genes. Gon4l protein contains conserved domains implicated in transcriptional repression and associates in a complex with the transcriptional repression mediators Yin Yang 1 and Sin3a/HDAC1, after these proteins are transiently expressed in cell lines. When bound to DNA, Gon4l is capable of repressing a nearby promoter and this function correlates with its ability to form a complex. Therefore, these results suggest that Gon4l may function as a transcriptional regulator by employing its associated co-factors in the identified complex. Lastly, a wide spectrum of tumors developed in Justy mice, indicating that Gon4l can also act as a tumor suppressor.
2

The Justy mutation disrupts the regulation of gene expression and cell cycle progression during B lymphopoiesis

Barr, Jennifer Yamaoka 01 May 2015 (has links)
B lymphopoiesis requires a network of transcription factors that orchestrate changes in gene expression amidst immunoglobulin gene rearrangement and periods of cell proliferation. Although proteins required for the function of this network have been identified, the precise mechanisms that coordinate these processes as hematopoietic progenitors differentiate into lineage-committed B cells remain unclear. Justy mice display a profound arrest of B cell development at the time of lineage commitment due to a point mutation that decreases expression of the protein Gon4-like. Previous studies suggested that Gon4-like functions to coordinate gene expression and cell division to determine cell fate, but the role of Gon4-like in B lymphopoiesis is largely unknown. Here we demonstrate that Gon4-like is required to regulate gene expression and cell cycle progression in B cell progenitors. Expression of genes required for B cell development is intact in Justy B cell progenitors, yet these cells fail to repress genes that promote the development of alternative lineages. In addition, Justy B cell progenitors are unable to upregulate genes that instruct cell cycle progression. Consistent with this, B cell progenitors from Justy mice show signs of impaired proliferation and undergo apoptosis despite containing elevated levels of activated STAT5, a transcription factor that promotes cell proliferation and survival. Genetic ablation of p53 or retroviral-mediated overexpression of pro-survival factors failed to rescue these defects. In contrast, overexpression of proteins that promote the G1/S transition of the cell cycle, including D-type cyclins, E2F2 and cyclin E, rescued pro-B cell development from Justy progenitors, an effect that was not observed upon overexpression of proteins that function during the S and G2M phases of the cell cycle. Further, overexpression of cyclin D3 led to partial restoration of gene repression in Justy pro-B cells. Notably, Gon4-like interacted with STAT5 when overexpressed in transformed cells, suggesting Gon4-like and STAT5 function together to activate expression of STAT5 target genes. Collectively, our data indicate that Gon4-like is required to coordinate gene repression and cell cycle progression during B lymphopoiesis.

Page generated in 0.0911 seconds