• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detektion eines mesozoischen Gangschwarmes in NW Namibia und Rekonstruktion regionaler Spannungszustände während der Südatlantiköffnung

Hahne, Kai. January 2004 (has links) (PDF)
Potsdam, Universiẗat, Diss., 2004.
2

Processing of shipborne magnetometer data and revision of the timing and geometry of the Mesozoic break-up of Gondwana = Auswertung schiffsfester Magnetometerdaten und die Neubestimmung des Zeitpunktes und der Geometrie des Mesozoischen Aufbruchs von Gondwana /

König, Matthias. January 2006 (has links)
Univ., Diss.--Bremen, 2005.
3

Reconstruction of sedimentary environment and climate conditions by multi- geochemical investigations of Late Palaeozoic glacial to postglacial sedimentary sequences from SW-Gondwana

Scheffler, Kay. Unknown Date (has links) (PDF)
University, Diss., 2004--Bonn.
4

Palaeozoic and mesozoic palaeomagnetism of South America results from Peru, Bolivia, Argentina, and Brazil /

Rakotosolofo, Nicolas A. Unknown Date (has links) (PDF)
University, Diss., 2004--München.
5

Upper Jurassic of the Barrow sub-basin: sedimentology, sequence stratigraphy and implications for reservoir development

Wulff, Keiran January 1991 (has links)
A chronostratigraphic subdivision of the Upper Jurassic synrift sediments in the eastern Barrow Sub-basin was developed from the integration of core logging, petrography, well log sequence analyses and seismic stratigraphy. From this basis, the Callovian to base Cretaceous sediments may be subdivided into five depositional sequences. The development of the sequence boundaries, in most part, is closely related to periods of major changes in basin configuration associated with the sequential breakup of eastern Gondwanaland. Initiation of the Upper Jurassic rift complex occurred during late Callovian early Oxfordian associated with the development of a northeast-southwest trending spreading centre on the Argo Abyssal Plain. The spreading centre propagated southwards during the Late Jurassic. This resulted in active rifting in the Barrow Sub-basin and ultimately led to the separation of the Indian and Australian plates during Valanginian time.Upper Jurassic synrift sediments in the eastern Barrow Sub-basin consist of detached basin floor fan complexes, channelised and canyon fed fan systems, slump deposits, prograding outer shelfal to slope deposits and deep marine claystones. Post-depositional uplift of the eastern shelfal areas during the Late Jurassic resulted in erosion of the transgressive and highstand fluvial-deltaic to shelfal deposits. These periods of uplift and erosion provided much of the sediment redeposited in the basinal areas during the lowstand periods. Seven sandstone facies were recognised in the Upper Jurassic sedimentary section based on core control. Each sandstone has unique reservoir characteristics which can be related to the depositional setting. / The abundance of glauconite and belemnites combined with ichnology and biostratigraphic assemblages associated with marine environments, indicate that deposition of all the sandstone facies occurred within an outer shelfal - deep marine environment. Reservoir quality was best developed in the dominantly medium grained, moderate - well sorted sandstones, (facies 7), which were deposited as detached, basin floor submarine fan sands or interbedded turbidites. In contrast, reservoir quality was relatively poorly developed in the remaining facies which were deposited as slope fans, slumps, or distal turbidite deposits.The abundance of quartz and presence of banded iron, jasper, and potassic feldspar grains support the provenance for the basinal sandstone facies being the Precambrian alkyl granites and banded iron formation of.the Pilbara Shield and Hammersley Ranges. These Precambrian igneous rocks and metasediments mark the eastern boundary of the Barrow Sub-basin study area. To predict the distribution of sedimentary facies in the Upper Jurassic synrift sediments of the eastern Barrow Sub-basin, the interplay between the major controlling depositional processes, namely tectonics, sediment supply and eustasy must be understood. Subdivision of the synrift sedimentary section on the basis of lithostratigraphy can be misleading and does not adequately resolve the facies relationships observed in the well intersection. The results of this research form the basis for a regional sequence analysis and seismic stratigraphic study.
6

Occurrence and Stability of Glaciations in Geologic Time

Zhuang, Kelin 2010 August 1900 (has links)
Earth is characterized by episodes of glaciations and periods of minimal or no ice through geologic time. Using the linear energy balance model (EBM), nonlinear EBM with empirical ice sheet schemes, the general circulation model coupled with an ice sheet model, this study investigates the occurrence and stability of glaciations in geologic time. The simulations since the last glacial maximum (LGM) suggest that the summertime thawline of ice sheets conforms closely to the equatorward edge of the ice sheets and implies the relative stability toward deglaciation. CO2 levels are indispensable in controlling the initiation of ice sheet in the Cretaceous. At low CO2 levels, ice sheets exist in all periods no matter LGM or the last interglacial (LIG) orbital elements; however, at high CO2 levels ice sheets rarely exist. The simulations agree well with recent geological evidence of the hysteresis of glaciations in the Permo-Carboniferous. Gondwanaland reached its glacial maximum when CO2 level was roughly the same or slightly higher than the preindustrial value. With a further increase of CO2, deglaciation dominates and results in an ice free state. Again, if CO2 decreased to the present level, Gondwanaland would be glaciated once more and start a new cycle of glaciation and deglaciation. Simulations from five paleogeography maps in Gondwanaland with a suite of CO2 levels and different orbital elements reveal that paleogeography, CO2 levels and the Milankovitch cycles all contribute to the glaciations of Gondwanaland. This study shows that orbital elements alone are insufficient to account for the evolution of ice sheets. Net radiative forcing caused by greenhouse gases, such as CO2 and solar constant change are the primary drivers to glacial inception or demise. Continental geography, CO2 levels, solar constant change, and the Milankovitch cycles complicate the glacial history of Earth.
7

Processing of shipborne magnetometer data and revision of the timing and geometry of the Mesozoic break-up of Gondwana = Auswertung schiffsfester Magnetometerdaten und die Neubestimmung des Zeitpunktes und der Geometrie des Mesozoischen Aufbruchs von Gondwana /

König, Matthias. January 2006 (has links)
Thesis (doctoral)--Universität Bremen, 2005. / Includes bibliographical references (p. 113-125).

Page generated in 0.0696 seconds