Spelling suggestions: "subject:"gottlieb group"" "subject:"ottlieb group""
1 |
Sobre os grupos de Gottlieb / On Gottlieb groupsPinto, Guilherme Vituri Fernandes [UNESP] 18 March 2016 (has links)
Submitted by Guilherme Vituri Fernandes Pinto null (214001018@rc.unesp.br) on 2016-04-11T07:27:24Z
No. of bitstreams: 1
Dissertação Guilherme Vituri.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-04-13T14:34:46Z (GMT) No. of bitstreams: 1
pinto_gvf_me_sjrp.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5) / Made available in DSpace on 2016-04-13T14:34:46Z (GMT). No. of bitstreams: 1
pinto_gvf_me_sjrp.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5)
Previous issue date: 2016-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho é estudar grande parte do artigo [6], no qual Gottlieb define o subgrupo G(X, x_0) de pi_1(X, x_0) (em que X é um CW-complexo conexo por caminhos), posteriormente chamado de grupo de Gottlieb; o calculamos para diversos espaços, como as esferas, o toro, os espaços projetivos, a garrafa de Klein, etc.; posteriormente, estudamos o artigo [22] de Varadarajan, que generalizou o grupo de Gottlieb para um subconjunto G(A, X) de [A, X]_∗ . Por fim, calculamos G(S^n, S^n). / The goal of this work is to study partially the article [6], in which Gottlieb has defined a subgroup G(X, x_0) of pi_1(X, x_0) (where X is a path-connected CW-complex based at x_0), called "Gottlieb group" in the literature. This group is computed in this work for some spaces, namely the spheres, the torus, the projective spaces, and the Klein bottle. Further, a paper by Varadarajan [22] who has generalized Gottlieb group to a subset G(A, X) of [A, X]_* is studied. Finally, the groups G(S^n, S^n) is computed.
|
Page generated in 0.0468 seconds