• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some problems in algebraic topology : on Lusternik-Schnirelmann categories and cocategories

Gilbert, William J. January 1967 (has links)
In his thesis we are concerned with certain numerical invariants of homotopy type akin to the Lusternik-Schnirelmann category and cocategory. In a series of papers I. Bernstein, T. Ganea, and P.J. Hilton developed the concepts of the category and weak category of a topological space. They also considered the related concepts of conilpotency and cup product length of a space and the weak category of a map. Later T. Ganea gave another definition of category and weak category (which we shall write as G-cat and G-wcat) in terms of vibrations and cofibrations and hence this dualizes easily in the sense of Eckmann-Hilton. We find the relationships between these invariants and then find various examples of spaces which show that the invariants are all different except cat and G-cat. The results are contained in the following theorem. The map $e:B -> OmegaSigma B$ is the natural embedding. All the invariants are normalized so as to take the value 0 on contractible spaces. THEOREM Let B have the homotopy type of a simply connected CW-complex, then $cat B = G-cat B geq G-wcat B geq wcat B geq wcat e geq conil B geq cup-long B$ and furthermore all the inequalities can occur. All the examples are spaces of the form $B = S^qcup_alpha e^n$ where $alphain pi_{n-1} (S^q)$. When B is of this form, we obtain conditions for the category and the weak categories of B to be less than or equal to one of the terms of Hopf invariants of $alpha$. We use these conditions to prove the examples. We then prove the dual theorem concerning the relationships between the invariants cocategory, weak cocategory, nilpotency and Whitehead product length. THEOREM Let A be countable CW-complex, then $cocat A geq wcocat A geq nil A geq W-long A$ and furthermore all the inequalities can occur. The proof is not dual to the first theorem, though the examples we use to show that the inequalities can exist are all spaces with two non-zero homotopy groups. The most interesting of these examples is the space A with 2 non-zero homotopy groups, $mathbb Z$ in dimension 2 and ${mathbb Z}_4$ in dimension 7 with k-invariant $u^4 in H^8(mathbb Z, 2; {mathbb Z}_4)$. This space is not an H-space, but has weak cocategory 1. The condition $wcocat A leq 1$ is equivalent to the fact that d is homotopic to 0 in the fibration $D -d-> A -e-> OmegaSigma A$. In order to show that wcocat A = 1 we have to calculate to cohomology ring of $OmegaSigma K(mathbb Z,2)$. The method we use to do this is the same as that used to calculate the cohomology ring of $OmegaSigma S^{n+1}$ using James' reduced product construction. Finally we show that for the above space A the fibration $Omega A -g-> A^S -f-> A$ has a retraction $ ho$ such that $ hocirc g$ is homotopic to 1 even though A is not an H-space.
2

Sobre os grupos de Gottlieb / On Gottlieb groups

Pinto, Guilherme Vituri Fernandes [UNESP] 18 March 2016 (has links)
Submitted by Guilherme Vituri Fernandes Pinto null (214001018@rc.unesp.br) on 2016-04-11T07:27:24Z No. of bitstreams: 1 Dissertação Guilherme Vituri.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-04-13T14:34:46Z (GMT) No. of bitstreams: 1 pinto_gvf_me_sjrp.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5) / Made available in DSpace on 2016-04-13T14:34:46Z (GMT). No. of bitstreams: 1 pinto_gvf_me_sjrp.pdf: 726432 bytes, checksum: c4db8ed97d1452e129b0f46186ed5a53 (MD5) Previous issue date: 2016-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho é estudar grande parte do artigo [6], no qual Gottlieb define o subgrupo G(X, x_0) de pi_1(X, x_0) (em que X é um CW-complexo conexo por caminhos), posteriormente chamado de grupo de Gottlieb; o calculamos para diversos espaços, como as esferas, o toro, os espaços projetivos, a garrafa de Klein, etc.; posteriormente, estudamos o artigo [22] de Varadarajan, que generalizou o grupo de Gottlieb para um subconjunto G(A, X) de [A, X]_∗ . Por fim, calculamos G(S^n, S^n). / The goal of this work is to study partially the article [6], in which Gottlieb has defined a subgroup G(X, x_0) of pi_1(X, x_0) (where X is a path-connected CW-complex based at x_0), called "Gottlieb group" in the literature. This group is computed in this work for some spaces, namely the spheres, the torus, the projective spaces, and the Klein bottle. Further, a paper by Varadarajan [22] who has generalized Gottlieb group to a subset G(A, X) of [A, X]_* is studied. Finally, the groups G(S^n, S^n) is computed.

Page generated in 0.0488 seconds