• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 475
  • 88
  • 87
  • 56
  • 43
  • 21
  • 14
  • 14
  • 11
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 989
  • 321
  • 204
  • 184
  • 169
  • 165
  • 154
  • 138
  • 124
  • 104
  • 97
  • 95
  • 93
  • 88
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Power-Performance Modeling and Adaptive Management of Heterogeneous Mobile Platforms​

January 2018 (has links)
abstract: Nearly 60% of the world population uses a mobile phone, which is typically powered by a system-on-chip (SoC). While the mobile platform capabilities range widely, responsiveness, long battery life and reliability are common design concerns that are crucial to remain competitive. Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful SoC with numerous other resources, including display, memory, power management IC, battery and wireless modems. Furthermore, the SoC itself is a heterogeneous resource that integrates many processing elements, such as CPU cores, GPU, video, image, and audio processors. Therefore, CPU cores do not dominate the platform power consumption under many application scenarios. Competitive performance requires higher operating frequency, and leads to larger power consumption. In turn, power consumption increases the junction and skin temperatures, which have adverse effects on the device reliability and user experience. As a result, allocating the power budget among the major platform resources and temperature control have become fundamental consideration for mobile platforms. Dynamic thermal and power management algorithms address this problem by putting a subset of the processing elements or shared resources to sleep states, or throttling their frequencies. However, an adhoc approach could easily cripple the performance, if it slows down the performance-critical processing element. Furthermore, mobile platforms run a wide range of applications with time varying workload characteristics, unlike early generations, which supported only limited functionality. As a result, there is a need for adaptive power and performance management approaches that consider the platform as a whole, rather than focusing on a subset. Towards this need, our specific contributions include (a) a framework to dynamically select the Pareto-optimal frequency and active cores for the heterogeneous CPUs, such as ARM big.Little architecture, (b) a dynamic power budgeting approach for allocating optimal power consumption to the CPU and GPU using performance sensitivity models for each PE, (c) an adaptive GPU frame time sensitivity prediction model to aid power management algorithms, and (d) an online learning algorithm that constructs adaptive run-time models for non-stationary workloads. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
512

Java GPU vs CPU Hashing Performance

Fang, Zhuowen January 2018 (has links)
In the latest years, the public’s interest in blockchain technology has been growing since it was brought up in 2008, primarily because of its ability to create an immutable ledger, for storing information that never will or can be changed. As an expanding chain structure, the act of nodes adding blocks to the chain is called mining which is regulated by consensus mechanism. In the most widely used consensus mechanism Proof of work, this process is based on computationally heavy guessing of hashes of blocks. Today, there are several prominent ways developed of performing this guessing, thanks to the development of hardware technology, either using the regular all-rounded computer processing unit (CPU), or using the more specialized graphics processing unit (GPU), or using dedicated hardware. This thesis studied the working principles of blockchain, implemented the crucial hash function used in Proof of Work consensus mechanism and other blockchain structures with the popular programming language Java on various platforms. CPU implementation is done with Java’s built-in functions and for GPU I used OpenCL ’ s Java binding JOCL. This project gives a quantified measurement for hash rate on different devices, determines that all the GPUs tested advantage over CPUs in performance and memory consumption. Java’s built-in function is easier to use but both of the implementations are doing well in platform independent that the same code can easily be executed on different platforms. Furthermore, based on the measurements, I did in-depth exploration of the principles and proposed future work, analyzed their application values combined with future possibilities of blockchain based on implementation difficulties and performance.
513

Processamento da rede neocognitron para reconhecimento facial em ambiente de alto desempenho GPU

Silva, Gustavo Poli Lameirão da 30 August 2007 (has links)
Made available in DSpace on 2016-06-02T19:05:30Z (GMT). No. of bitstreams: 1 1899.pdf: 6848122 bytes, checksum: 73de4f19b5358e6ac6d95ad0e75e7ea1 (MD5) Previous issue date: 2007-08-30 / Financiadora de Estudos e Projetos / This work presents an implementation of the Neocognitron Neural Network, using a high performance computing architecture based on GPU (Graphics Processing Unit). Neocognitron is an artificial neural network, proposed by Fukushima and collaborators, constituted of several hierarchical stages of neuron layers, organized in two-dimensional matrices called cellular plains. For the high performance computation of Face Recognition application using Neocognitron it was used CUDA (Compute Unified Device Architecture) as API (Application Programming Interface) between the CPU and the GPU, from GeForce 8800 GTX of NVIDIA company, with 128 ALU s. As face image databases it was used a face database created at UFSCar, and the CMU-PIE (Carnegie Melon University - Pose, Illumination, and Expression) database. The load balancing through the parallel processing architecture was obtained by means of the distributed processing of the cellular connections as threads organized in blocks, following the CUDA philosophy of development. The results showed the viability of this type of device as a massively parallel data processing tool, and that smaller the granularity of the parallel processing, and the independence of the processing, better is its performance. / Neste trabalho é apresentada a implementação da Rede Neural Neocognitron, usando uma arquitetura de computação de alto desempenho baseada em GPU (Graphics Processing Unit). O Neocognitron é uma rede neural artificial, proposta por Fukushima e colaboradores, constituída de vários estágios de camadas de neurônios, organizados em matrizes bidimensionais denominadas planos celulares. Para o processamento de alto desempenho da aplicação de reconhecimento facial usando neocognitron foi utilizado o CUDA (Compute Unified Device Architecture) como API (Application Programming Interface) entre o CPU e o GPU, da GeForce 8800 GTX da empresa NVIDIA, com 128 ALU s. Como repositórios de imagens faciais foram utilizados imagens faciais desenvolvido na UFSCar e o banco da Universidade de Carnegie Melon, CMU-PIE. O balanceamento de carga na arquitetura de processamento paralelo foi obtido considerando o processamento de uma conexão de neurônio como um thread, e um conjunto de threads, como um bloco, segundo a filosofia de desenvolvimento dentro deste ambiente. Os resultados mostraram a viabilidade do uso deste tipo de dispositivo como ferramenta de processamento de dados maciçamente paralelo e que quanto menor a granularidade da paralelização e a independência dos processamentos, melhor é seu desempenho.
514

Implementação e análise de algoritmos para estimação de movimento em processadores paralelos tipo GPU (Graphics Processing Units) / Implementation and analysis of algorithms for motion estimation onto parallels processors type GPU

Monteiro, Eduarda Rodrigues January 2012 (has links)
A demanda por aplicações que processam vídeos digitais têm obtido atenção na indústria e na academia. Considerando a manipulação de um elevado volume de dados em vídeos de alta resolução, a compressão de vídeo é uma ferramenta fundamental para reduzir a quantidade de informações de modo a manter a qualidade viabilizando a respectiva transmissão e armazenamento. Diferentes padrões de codificação de vídeo foram desenvolvidos para impulsionar o desenvolvimento de técnicas avançadas para este fim, como por exemplo, o padrão H.264/AVC. Este padrão é considerado o estado-da-arte, pois proporciona maior eficiência em codificação em relação a padrões existentes (MPEG-4). Entre todas as ferramentas inovadoras apresentadas pelas mais recentes normas de codificação, a Estimação de Movimento (ME) é a técnica que provê a maior parcela dos ganhos. A ME busca obter a relação de similaridade entre quadros vizinhos de uma cena, porém estes ganhos são obtidos ao custo de um elevado custo computacional representando a maior parte da complexidade total dos codificadores atuais. O objetivo do trabalho é acelerar o processo de ME, principalmente quando vídeos de alta resolução são codificados. Esta aceleração concentra-se no uso de uma plataforma massivamente paralela, denominada GPU (Graphics Processing Unit). Os algoritmos da ME apresentam um elevado potencial de paralelização e são adequados para implementação em arquiteturas paralelas. Assim, diferentes algoritmos têm sido propostos a fim de diminuir o custo computacional deste módulo. Este trabalho apresenta a implementação e a exploração do paralelismo de dois algoritmos da ME em GPU, focados na codificação de vídeo de alta definição e no processamento em tempo real. O algoritmo Full Search (FS) é conhecido como algoritmo ótimo, pois encontra os melhores resultados a partir de uma busca exaustiva entre os quadros. O algoritmo rápido Diamond Search (DS) reduz significativamente a complexidade da ME mantendo a qualidade de vídeo próxima ao desempenho apresentado pelo FS. A partir da exploração máxima do paralelismo dos algoritmos FS e DS e do processamento paralelo disponível nas GPUs, este trabalho apresenta um método para mapear estes algoritmos em GPU, considerando a arquitetura CUDA (Compute Unified Device Architecture). Para avaliação de desempenho, as soluções CUDA são comparadas com as respectivas versões multi-core (utilizando biblioteca OpenMP) e distribuídas (utilizando MPI como infraestrutura de suporte). Todas as versões foram avaliadas em diferentes resoluções e os resultados foram comparados com algoritmos da literatura. As implementações propostas em GPU apresentam aumentos significativos, em termos de desempenho, em relação ao software de referência do codificador H.264/AVC e, além disso, apresentam ganhos expressivos em relação às respectivas versões multi-core, distribuída e trabalhos GPGPU propostos na literatura. / The demand for applications processing digital videos has become the focus of attention in industry and academy. Considering the manipulation of the high volume of data contained in high resolution digital videos, video compression is a fundamental tool for reduction in the amount of information in order to maintain the quality and, thus enabling its respective transfer and storage. As to obtain the development of advanced video coding techniques, different standards of video encoding were developed, for example, the H.264/AVC. This standard is considered the state-of-art for proving high coding efficiency compared to previous standards (MPEG-4). Among all innovative tools featured by the latest video coding standards, the Motion Estimation is the technique that provides the most important coding gains. ME searches obtain the similarity relation between neighboring frames of the one scene. However, these gains were obtained by the elevated computational cost, representing the greater part of the total complexity of the current encoders. The goal of this project is to accelerate the Motion Estimation process, mainly when high resolution digital videos were encoded. This acceleration focuses on the use of a massively parallel platform called GPU (Graphics Processing Unit). The Motion Estimation block matching algorithms present a high potential for parallelization and are suitable for implementation in parallel architectures. Therefore, different algorithms have been proposed to decrease the computational complexity of this module. This work presents the implementation and parallelism exploitation of two motion estimation algorithms in GPU focused in encoding high definition video and the real time processing. Full Search algorithm (FS) is known as optimal since it finds the best match by exhaustively searching between frames. The fast Diamond Search algorithm reduces significantly the ME complexity while keeping the video quality near FS performance. By exploring the maximum inherent parallelism of FS and DS and the available parallel processing capability of GPUs, this work presents an efficient method to map out these algorithms onto GPU considering the CUDA architecture (Compute Unified Device Architecture). For performance evaluation, the CUDA solutions are compared with respective multi-core (using OpenMP library) and distributed (using MPI as supporting infrastructure) versions. All versions were evaluated in different video resolutions and the results were compared with algorithms found in the literature. The proposed implementations onto GPU present significant increase, in terms of performance, in relation with the H.264/AVC encoder reference software and, moreover, present expressive gains in relation with multi-core, distributed versions and GPGPU alternatives proposed in literature.
515

Energy consumption and performance of HPC architecture for Exascale / Consumo de energia e desempenho de arquiteturas PAD para Exascale

Oliveira, Daniel Alfonso Gonçalves de January 2013 (has links)
Uma das principais preocupações para construir a próxima geração de sistemas PAD é o consumo de energia. Para quebrar a barreira de exascale a comunidade científica precisa investigar alternativas que possam lidar com o problema de consumo de energia. Sistemas PAD atuais não se preocupam com energia e já consomem GigaWatts. Requisitos de consumo de energia restringirão fortemente sistemas futuros. Nesse contexto processadores de alta potência abrem espaço para novas arquiteturas. Duas arquiteturas surgem no contexto de PAD. A primeira arquitetura são as unidades de processamento gráfico (GPU), GPUs possuem vários núcleos de processamento, suportando milhares de threads simultâneas, se adaptando bem a aplicações massivamente paralelas. Hoje alguns dos melhores sistemas PAD possuem GPUs que demonstram um alto desempenho por um baixo consumo de energia para várias aplicações paralelas. A segunda arquitetura são os processadores de baixo consumo, processadores ARM estão melhorando seu desempenho e mantendo o menor consumo de energia possível. Como exemplo desse ganho, projetos como Mont-Blanc apostam no uso de ARM para construir um sistema PAD energeticamente eficiente. Este trabalho visa verificar o potencial dessas arquiteturas emergentes. Avaliamos essas arquiteturas e comparamos com a arquitetura mais comum encontrada nos sistemas PAD atuais. O principal objetivo é analisar o consumo de energia e o desempenho dessas arquiteturas no contexto de sistemas PAD. Portanto, benchmarks heterogêneos foram executados em todas as arquiteturas. Os resultados mostram que a arquitetura de GPU foi a mais rápida e a melhor em termos de consumo de energia. GPU foi pelo menos 5 vezes mais rápida e consumiu 18 vezes menos energia considerando todos os benchmarks testados. Também observamos que processadores de alta potência foram mais rápidos e consumiram menos energia, para tarefas com uma carga de trabalho leve, do que comparado com processadores de baixo consumo. Entretanto, para tarefas com carga de trabalho leve processadores de baixo consumo apresentaram um consumo de energia melhor. Concluímos que sistemas heterogêneos combinando GPUs e processadores de baixo consumo podem ser uma solução interessante para alcançar um eficiência energética superior. Apesar de processadores de baixo consumo apresentarem um pior consumo de energia para cargas de trabalho pesadas. O consumo de energia extremamente baixo durante o processamento é inferior ao consumo ocioso das demais arquiteturas. Portanto, combinando processadores de baixo consumo para gerenciar GPUs pode resultar em uma eficiência energética superior a sistemas que combinam processadores de alta potência com GPUs. / One of the main concerns to build the new generation of High Performance Computing (HPC) systems is energy consumption. To break the exascale barrier, the scientific community needs to investigate alternatives that cope with energy consumption. Current HPC systems are power hungry and are already consuming Megawatts of energy. Future exascale systems will be strongly constrained by their energy consumption requirements. Therefore, general purpose high power processors could be replaced by new architectures in HPC design. Two architectures emerge in the HPC context. The first architecture uses Graphic Processing Units (GPU). GPUs have many processing cores, supporting simultaneous execution of thousands of threads, adapting well to massively parallel applications. Today, top ranked HPC systems feature many GPUs, which present high processing speed at low energy consumption budget with various parallel applications. The second architecture uses Low Power Processors, such as ARM processors. They are improving the performance, while still aiming to keep the power consumption as low as possible. As an example of this performance gain, projects like Mont-Blanc bet on ARM to build energy efficient HPC systems. This work aims to verify the potential of these emerging architectures. We evaluate these architectures and compare them to the current most common HPC architecture, high power processors such as Intel. The main goal is to analyze the energy consumption and performance of these architectures in the HPC context. Therefore, heterogeneous HPC benchmarks were executed in the architectures. The results show that the GPU architecture is the fastest and the best in terms of energy efficiency. GPUs were at least 5 times faster while consuming 18 times less energy for all tested benchmarks. We also observed that high power processors are faster than low power processors and consume less energy for heavy-weight workloads. However, for light-weight workloads, low power processors presented a better energy efficiency. We conclude that heterogeneous systems combining GPUs and low power processors can be an interesting solution to achieve greater energy efficiency, although low power processors presented a worse energy efficiency for HPC workloads. Their extremely low power consumption during the processing of an application is less than the idle power of the other architectures. Therefore, combining low power processors with GPUs could result in an overall energy efficiency greater than high power processors combined with GPUs.
516

Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento / Evaluation of transient fault effect in the register files of graphics processing units

Nedel, Werner Mauricio January 2015 (has links)
Unidades gráficas de processamento, mais conhecidas como GPUs (Graphics Processing Unit), são dispositivos que possuem um grande poder de processamento paralelo com respectivo baixo custo de operação. Sua capacidade de simultaneamente manipular grandes blocos de memória a credencia a ser utilizada nas mais variadas aplicações, tais como processamento de imagens, controle de tráfego aéreo, pesquisas acadêmicas, dentre outras. O termo GPGPUs (General Purpose Graphic Processing Unit) designa o uso de GPUs utilizadas na computação de aplicações de uso geral. A rápida proliferação das GPUs com ao advento de um modelo de programação amigável ao usuário fez programadores utilizarem essa tecnologia em aplicações onde confiabilidade é um requisito crítico, como aplicações espaciais, automotivas e médicas. O crescente uso de GPUs nestas aplicações faz com que novas arquiteturas deste dispositivo sejam propostas a fim de explorar seu alto poder computacional. A arquitetura FlexGrip (FLEXible GRaphIcs Processor) é um exemplo de GPGPU implementada em FPGA (Field Programmable Gate Array), sendo compatível com programas implementados especificamente para GPUs, com a vantagem de possibilitar a customização da arquitetura de acordo com a necessidade do usuário. O constante aumento da demanda por tecnologia fez com que GPUs de última geração sejam fabricadas em tecnologias com processo de fabricação de até 28nm, com frequência de relógio de até 1GHz. Esse aumento da frequência de relógio e densidade de transistores, combinados com a redução da tensão de operação, faz com que os transistores fiquem mais suscetíveis a falhas causadas por interferência de radiação. O modelo de programação utilizado pelas GPUs faz uso de constantes acessos a memórias e registradores, tornando estes dispositivos sensíveis a perturbações transientes em seus valores armazenados. Estas perturbações são denominadas Single Event Upset (SEU), ou bit-flip, e podem resultar em erros no resultado final da aplicação. Este trabalho tem por objetivo apresentar um modelo de injeção de falhas transientes do tipo SEU nos principais bancos de registradores da GPGPU Flexgrip, avaliando o comportamento da execução de diferentes algoritmos em presença de SEUs. O impacto de diferentes distribuições de recursos computacionais da GPU em sua confiabilidade também é abordado. Resultados podem indicar maneiras eficientes de obter-se confiabilidade explorando diferentes configurações de GPUs. / Graphic Process Units (GPUs) are specialized massively parallel units that are widely used due to their high computing processing capability with respective lower costs. The ability to rapidly manipulate high amounts of memory simultaneously makes them suitable for solving computer-intensive problems, such as analysis of air traffic control, academic researches, image processing and others. General-Purpose Graphic Processing Units (GPGPUs) designates the use of GPUs in applications commonly handled by Central Processing Units (CPUs). The rapid proliferation of GPUs due to the advent of significant programming support has brought programmers to use such devices in safety critical applications, like automotive, space and medical. This crescent use of GPUs pushed developers to explore its parallel architecture and proposing new implementations of such devices. The FLEXible GRaphics Processor (FlexGrip) is an example of GPGPU optimized for Field Programmable Arrays (FPGAs) implementation, fully compatible with GPU’s compiled programs. The increasing demand for computational has pushed GPUs to be built in cuttingedge technology down to 28nm fabrication process for the latest NVIDIA devices with operating clock frequencies up to 1GHz. The increases in operating frequencies and transistor density combined with the reduction of voltage supplies have made transistors more susceptible to faults caused by radiation. The program model adopted by GPUs makes constant accesses to its memories and registers, making this device sensible to transient perturbations in its stored values. These perturbations are called Single Event Upset (SEU), or just bit-flip, and might cause the system to experience an error. The main goal of this work is to study the behavior of the GPGPU FlexGrip under the presence of SEUs in a range of applications. The distribution of computational resources of the GPUs and its impact in the GPU confiability is also explored, as well as the characterization of the errors observed in the fault injection campaigns. Results can indicate efficient configurations of GPUs in order to avoid perturbations in the system under the presence of SEUs.
517

Efektivní trasování cest v objemových médiích na GPU / Efficient GPU path tracing in solid volumetric media

Forti, Federico January 2018 (has links)
Realistic Image synthesis, usually, requires long computations and the simulation of the light interacting with a virtual scene. One of the most computationally intensive simulation in this area is the visualization of solid participating media. This media can describe many different types of object with the same physical parameters (e.g. marble, air, fire, skin, wax ...). Simulating the light interacting with it requires the computation of many independent photons interactions inside the medium. However, those interactions can be computed in parallel, using the power of modern Graphic Processor Unit, or GPU, computing. This work present an overview over different methodologies, that can affect the performance of this type of simulations on the GPU. Different existing ideas are analyzed, compared and modified with the scope of speeding up the computation respect to the classic CPU implementation. 1
518

Implementação e análise de algoritmos para estimação de movimento em processadores paralelos tipo GPU (Graphics Processing Units) / Implementation and analysis of algorithms for motion estimation onto parallels processors type GPU

Monteiro, Eduarda Rodrigues January 2012 (has links)
A demanda por aplicações que processam vídeos digitais têm obtido atenção na indústria e na academia. Considerando a manipulação de um elevado volume de dados em vídeos de alta resolução, a compressão de vídeo é uma ferramenta fundamental para reduzir a quantidade de informações de modo a manter a qualidade viabilizando a respectiva transmissão e armazenamento. Diferentes padrões de codificação de vídeo foram desenvolvidos para impulsionar o desenvolvimento de técnicas avançadas para este fim, como por exemplo, o padrão H.264/AVC. Este padrão é considerado o estado-da-arte, pois proporciona maior eficiência em codificação em relação a padrões existentes (MPEG-4). Entre todas as ferramentas inovadoras apresentadas pelas mais recentes normas de codificação, a Estimação de Movimento (ME) é a técnica que provê a maior parcela dos ganhos. A ME busca obter a relação de similaridade entre quadros vizinhos de uma cena, porém estes ganhos são obtidos ao custo de um elevado custo computacional representando a maior parte da complexidade total dos codificadores atuais. O objetivo do trabalho é acelerar o processo de ME, principalmente quando vídeos de alta resolução são codificados. Esta aceleração concentra-se no uso de uma plataforma massivamente paralela, denominada GPU (Graphics Processing Unit). Os algoritmos da ME apresentam um elevado potencial de paralelização e são adequados para implementação em arquiteturas paralelas. Assim, diferentes algoritmos têm sido propostos a fim de diminuir o custo computacional deste módulo. Este trabalho apresenta a implementação e a exploração do paralelismo de dois algoritmos da ME em GPU, focados na codificação de vídeo de alta definição e no processamento em tempo real. O algoritmo Full Search (FS) é conhecido como algoritmo ótimo, pois encontra os melhores resultados a partir de uma busca exaustiva entre os quadros. O algoritmo rápido Diamond Search (DS) reduz significativamente a complexidade da ME mantendo a qualidade de vídeo próxima ao desempenho apresentado pelo FS. A partir da exploração máxima do paralelismo dos algoritmos FS e DS e do processamento paralelo disponível nas GPUs, este trabalho apresenta um método para mapear estes algoritmos em GPU, considerando a arquitetura CUDA (Compute Unified Device Architecture). Para avaliação de desempenho, as soluções CUDA são comparadas com as respectivas versões multi-core (utilizando biblioteca OpenMP) e distribuídas (utilizando MPI como infraestrutura de suporte). Todas as versões foram avaliadas em diferentes resoluções e os resultados foram comparados com algoritmos da literatura. As implementações propostas em GPU apresentam aumentos significativos, em termos de desempenho, em relação ao software de referência do codificador H.264/AVC e, além disso, apresentam ganhos expressivos em relação às respectivas versões multi-core, distribuída e trabalhos GPGPU propostos na literatura. / The demand for applications processing digital videos has become the focus of attention in industry and academy. Considering the manipulation of the high volume of data contained in high resolution digital videos, video compression is a fundamental tool for reduction in the amount of information in order to maintain the quality and, thus enabling its respective transfer and storage. As to obtain the development of advanced video coding techniques, different standards of video encoding were developed, for example, the H.264/AVC. This standard is considered the state-of-art for proving high coding efficiency compared to previous standards (MPEG-4). Among all innovative tools featured by the latest video coding standards, the Motion Estimation is the technique that provides the most important coding gains. ME searches obtain the similarity relation between neighboring frames of the one scene. However, these gains were obtained by the elevated computational cost, representing the greater part of the total complexity of the current encoders. The goal of this project is to accelerate the Motion Estimation process, mainly when high resolution digital videos were encoded. This acceleration focuses on the use of a massively parallel platform called GPU (Graphics Processing Unit). The Motion Estimation block matching algorithms present a high potential for parallelization and are suitable for implementation in parallel architectures. Therefore, different algorithms have been proposed to decrease the computational complexity of this module. This work presents the implementation and parallelism exploitation of two motion estimation algorithms in GPU focused in encoding high definition video and the real time processing. Full Search algorithm (FS) is known as optimal since it finds the best match by exhaustively searching between frames. The fast Diamond Search algorithm reduces significantly the ME complexity while keeping the video quality near FS performance. By exploring the maximum inherent parallelism of FS and DS and the available parallel processing capability of GPUs, this work presents an efficient method to map out these algorithms onto GPU considering the CUDA architecture (Compute Unified Device Architecture). For performance evaluation, the CUDA solutions are compared with respective multi-core (using OpenMP library) and distributed (using MPI as supporting infrastructure) versions. All versions were evaluated in different video resolutions and the results were compared with algorithms found in the literature. The proposed implementations onto GPU present significant increase, in terms of performance, in relation with the H.264/AVC encoder reference software and, moreover, present expressive gains in relation with multi-core, distributed versions and GPGPU alternatives proposed in literature.
519

Energy consumption and performance of HPC architecture for Exascale / Consumo de energia e desempenho de arquiteturas PAD para Exascale

Oliveira, Daniel Alfonso Gonçalves de January 2013 (has links)
Uma das principais preocupações para construir a próxima geração de sistemas PAD é o consumo de energia. Para quebrar a barreira de exascale a comunidade científica precisa investigar alternativas que possam lidar com o problema de consumo de energia. Sistemas PAD atuais não se preocupam com energia e já consomem GigaWatts. Requisitos de consumo de energia restringirão fortemente sistemas futuros. Nesse contexto processadores de alta potência abrem espaço para novas arquiteturas. Duas arquiteturas surgem no contexto de PAD. A primeira arquitetura são as unidades de processamento gráfico (GPU), GPUs possuem vários núcleos de processamento, suportando milhares de threads simultâneas, se adaptando bem a aplicações massivamente paralelas. Hoje alguns dos melhores sistemas PAD possuem GPUs que demonstram um alto desempenho por um baixo consumo de energia para várias aplicações paralelas. A segunda arquitetura são os processadores de baixo consumo, processadores ARM estão melhorando seu desempenho e mantendo o menor consumo de energia possível. Como exemplo desse ganho, projetos como Mont-Blanc apostam no uso de ARM para construir um sistema PAD energeticamente eficiente. Este trabalho visa verificar o potencial dessas arquiteturas emergentes. Avaliamos essas arquiteturas e comparamos com a arquitetura mais comum encontrada nos sistemas PAD atuais. O principal objetivo é analisar o consumo de energia e o desempenho dessas arquiteturas no contexto de sistemas PAD. Portanto, benchmarks heterogêneos foram executados em todas as arquiteturas. Os resultados mostram que a arquitetura de GPU foi a mais rápida e a melhor em termos de consumo de energia. GPU foi pelo menos 5 vezes mais rápida e consumiu 18 vezes menos energia considerando todos os benchmarks testados. Também observamos que processadores de alta potência foram mais rápidos e consumiram menos energia, para tarefas com uma carga de trabalho leve, do que comparado com processadores de baixo consumo. Entretanto, para tarefas com carga de trabalho leve processadores de baixo consumo apresentaram um consumo de energia melhor. Concluímos que sistemas heterogêneos combinando GPUs e processadores de baixo consumo podem ser uma solução interessante para alcançar um eficiência energética superior. Apesar de processadores de baixo consumo apresentarem um pior consumo de energia para cargas de trabalho pesadas. O consumo de energia extremamente baixo durante o processamento é inferior ao consumo ocioso das demais arquiteturas. Portanto, combinando processadores de baixo consumo para gerenciar GPUs pode resultar em uma eficiência energética superior a sistemas que combinam processadores de alta potência com GPUs. / One of the main concerns to build the new generation of High Performance Computing (HPC) systems is energy consumption. To break the exascale barrier, the scientific community needs to investigate alternatives that cope with energy consumption. Current HPC systems are power hungry and are already consuming Megawatts of energy. Future exascale systems will be strongly constrained by their energy consumption requirements. Therefore, general purpose high power processors could be replaced by new architectures in HPC design. Two architectures emerge in the HPC context. The first architecture uses Graphic Processing Units (GPU). GPUs have many processing cores, supporting simultaneous execution of thousands of threads, adapting well to massively parallel applications. Today, top ranked HPC systems feature many GPUs, which present high processing speed at low energy consumption budget with various parallel applications. The second architecture uses Low Power Processors, such as ARM processors. They are improving the performance, while still aiming to keep the power consumption as low as possible. As an example of this performance gain, projects like Mont-Blanc bet on ARM to build energy efficient HPC systems. This work aims to verify the potential of these emerging architectures. We evaluate these architectures and compare them to the current most common HPC architecture, high power processors such as Intel. The main goal is to analyze the energy consumption and performance of these architectures in the HPC context. Therefore, heterogeneous HPC benchmarks were executed in the architectures. The results show that the GPU architecture is the fastest and the best in terms of energy efficiency. GPUs were at least 5 times faster while consuming 18 times less energy for all tested benchmarks. We also observed that high power processors are faster than low power processors and consume less energy for heavy-weight workloads. However, for light-weight workloads, low power processors presented a better energy efficiency. We conclude that heterogeneous systems combining GPUs and low power processors can be an interesting solution to achieve greater energy efficiency, although low power processors presented a worse energy efficiency for HPC workloads. Their extremely low power consumption during the processing of an application is less than the idle power of the other architectures. Therefore, combining low power processors with GPUs could result in an overall energy efficiency greater than high power processors combined with GPUs.
520

Um modelo de iluminação probabilístico para renderização de pelagem animal rala sob influência de água

da Cunha Santiago, Hemir 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T15:52:57Z (GMT). No. of bitstreams: 2 arquivo1894_1.pdf: 7059196 bytes, checksum: fd446b4e905af6ff54c5aa0798e13d32 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 / Este trabalho apresenta um modelo de iluminação probabilístico implementado em GPU (Graphics Processing Unit) para renderização de pelagem rala de mamíferos sob influência do ambiente, particularmente água. Nós estendemos a técnica conhecida como Fakefur incluindo um método que captura as características principais do pêlo no estado de molhado. Uma função de umidade é usada para controlar o nível de umidade do pêlo por variação de alguns parâmetroschave de renderização. Algumas fotos de cães secos e molhados foram usadas para calibrar os parâmetros do sistema. O sistema descrito neste trabalho tem uma complexidade computacional muito menor do que os métodos de renderização de pêlos tradicionais, devido não apenas à sua natureza probabilística, mas também por sua implementação em GPU, que possibilita renderização de pelagem animal seca e molhada em tempo-real

Page generated in 0.0511 seconds