• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hilbert Functions of General Hypersurface Restrictions and Local Cohomology for Modules

Christina A. Jamroz (5929829) 16 January 2019 (has links)
<div>In this thesis, we study invariants of graded modules over polynomial rings. In particular, we find bounds on the Hilbert functions and graded Betti numbers of certain modules. This area of research has been widely studied, and we discuss several well-known theorems and conjectures related to these problems. Our main results extend some known theorems from the case of homogeneous ideals of polynomial rings R to that of graded R-modules. In Chapters 2 & 3, we discuss preliminary material needed for the following chapters. This includes monomial orders for modules, Hilbert functions, graded Betti numbers, and generic initial modules.</div><div> </div><div> In Chapter 4, we discuss x_n-stability of submodules M of free R-modules F, and use this stability to examine properties of lexsegment modules. Using these tools, we prove our first main result: a general hypersurface restriction theorem for modules. This theorem states that, when restricting to a general hypersurface of degree j, the Hilbert series of M is bounded above by that of M^{lex}+x_n^jF. In Chapter 5, we discuss Hilbert series of local cohomology modules. As a consequence of our general hypersurface restriction theorem, we give a bound on the Hilbert series of H^i_m(F/M). In particular, we show that the Hilbert series of local cohomology modules of a quotient of a free module does not decrease when the module is replaced by a quotient by the lexicographic module M^{lex}.</div><div> </div><div> The content of Chapter 6 is based on joint work with Gabriel Sosa. The main theorem is an extension of a result of Caviglia and Sbarra to polynomial rings with base field of any characteristic. Given a homogeneous ideal containing both a piecewise lex ideal and an ideal generated by powers of the variables, we find a lex ideal with the following property: the ideal in the polynomial ring generated by the piecewise lex ideal, the ideal of powers, and the lex ideal has the same Hilbert function and Betti numbers at least as large as those of the original ideal. This bound on the Betti numbers is sharp, and is a closer bound than what was previously known in this setting.</div>
2

Combinatorial and algebraic properties of balanced simplicial complexes

Venturello, Lorenzo 19 November 2019 (has links)
Simplicial complexes are mathematical objects whose importance stretches from topology to commutative algebra and combinatorics. In this thesis we focus on the family of balanced simplicial complexes. A d-dimensional simplicial complex is balanced if its 1-skeleton can be properly (d+1)-colored, as in the classical graph theoretic sense. Equivalently, a d-dimensional complex is balanced iff it admits a non-degenerate simplicial projection to the d-simplex. We present results on these complexes from a number of different points of view. After two introductory chapters, we exhibit in chapter 3 an infinite family of balanced counterexamples to Stanley's partitionability conjecture. These complexes, which are in addition constructible, answer a question of Duval et al. in the negative. Next we shift to combinatorial topology, and study cross-flips, i.e., local moves on balanced manifolds introduced by Izmestiev, Klee and Novik, which preserve both the coloring and the topological type. In chapter 4 we provide an explicit description and enumeration of an interesting subset of these moves and use it to prove a Pachner-type theorem. Indeed, we show that any two balanced combinatorial manifolds with boundary which are PL-homeomorphic can be transformed one into the other by a sequence of shellings and inverse shellings which preserve both the coloring and the topological type at each step. This solves a problem proposed by Izmestiev, Klee and Novik. Chapter 5 is devoted to the study of certain algebraic invariants of simplicial complexes in the balanced case. Here upper bounds for the graded Betti numbers of the Stanley-Reisner ring of balanced simplicial complexes are investigated in several level of generalities, and we show that they are sharper than in the general case. First, we employ Hochster formula to obtain inequalities for the case of arbitrary balanced complexes. Next, we focus on the balanced Cohen-Macaulay case and we obtain two upper bounds via two different strategies. Using similar ideas we also bound the Betti numbers in the linear strand of balanced normal d-pseudomanifolds, for d>2. Finally, we explicitly compute graded Betti numbers of the class of stacked cross-polytopal spheres, and conjecture that they provide a sharp upper bound for those of all balanced pseudomanifolds with the same dimension and number of vertices. In the last chapter, we implement cross-flips on balanced surfaces and 3-manifolds, and use this computer program to search for balanced manifolds on few vertices, possibly vertex-minimal. Reducing the barycentric subdivision of vertex minimal triangulations, we find a long list of balanced triangulations of interesting spaces on few vertices. Among those stand out a balanced vertex-minimal triangulation of the dunce hat (11-vertices) and of the 2- and 3-dimensional real projective space (9 and 16 vertices respectively). Using obstructions from knot theory and a careful choice of flips we find a balanced non-shellable 3-sphere and a balanced shellable non-vertex-decomposable 3-sphere on 28 and 22 vertices respectively. These are the smallest instances known in the literature.
3

Toric Ideals of Finite Simple Graphs

Keiper, Graham January 2022 (has links)
This thesis deals with toric ideals associated with finite simple graphs. In particular we establish some results pertaining to the nature of the generators and syzygies of toric ideals associated with finite simple graphs. The first result dealt with in this thesis expands upon work by Favacchio, Hofscheier, Keiper, and Van Tuyl which states that for G, a graph obtained by "gluing" a graph H1 to a graph H2 along an induced subgraph, we can obtain the toric ideal associated to G from the toric ideals associated to H1 and H2 by taking their sum as ideals in the larger ring and saturating by a particular monomial f. Our contribution is to sharpen the result and show that instead of a saturation by f, we need only examine the colon ideal with f^2. The second result treated by this thesis pertains to graded Betti numbers of toric ideals of complete bipartite graphs. We show that by counting specific subgraphs one can explicitly compute a minimal set of generators for the corresponding toric ideals as well as minimal generating sets for the first two syzygy modules. Additionally we provide formulas for some of the graded Betti numbers. The final topic treated pertains to a relationship between the fundamental group the finite simple graph G and the associated toric ideal to G. It was shown by Villareal as well as Hibi and Ohsugi that the generators of a toric ideal associated to a finite simple graph correspond to the closed even walks of the graph G, thus linking algebraic properties to combinatorial ones. Therefore it is a natural question whether there is a relationship between the toric ideal associated to the graph G and the fundamental group of the graph G. We show, under the assumption that G is a bipartite graph with some additional assumptions, one can conceive of the set of binomials in the toric ideal with coprime terms, B(IG), as a group with an appropriately chosen operation ⋆ and establish a group isomorphism (B(IG), ⋆) ∼= π1(G)/H where H is a normal subgroup. We exploit this relationship further to obtain information about the generators of IG as well as bounds on the Betti numbers. We are also able to characterise all regular sequences and hence compute the depth of the toric ideal of G. We also use the framework to prove that IG = (⟨G⟩ : (e1 · · · em)^∞) where G is a set of binomials which correspond to a generating set of π1(G). / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0685 seconds