Spelling suggestions: "subject:"9gradient methods"" "subject:"cogradient methods""
31 |
Alignement paramétrique d’images : proposition d’un formalisme unifié et prise en compte du bruit pour le suivi d’objetsAuthesserre, Jean-baptiste 02 December 2010 (has links)
L’alignement d’images paramétrique a de nombreuses applications pour la réalité augmentée, la compression vidéo ou encore le suivi d’objets. Dans cette thèse, nous nous intéressons notamment aux techniques de recalage d’images (template matching) reposant sur l’optimisation locale d’une fonctionnelle d’erreur. Ces approches ont conduit ces dernières années à de nombreux algorithmes efficaces pour le suivi d’objets. Cependant, les performances de ces algorithmes ont été peu étudiées lorsque les images sont dégradées par un bruit important comme c’est le cas, par exemple, pour des captures réalisées dans des conditions de faible luminosité. Dans cette thèse, nous proposons un nouveau formalisme, appelé formalisme bidirectionnel, qui unifie plusieurs approches de l’état de l’art. Ce formalisme est utilisé dans un premier temps pour porter un éclairage nouveau sur un grand nombre d’approches de la littérature et en particulier sur l’algorithme ESM (Efficient Second-order Minimization). Nous proposons ensuite une étude théorique approfondie de l’influence du bruit sur le processus d’alignement. Cette étude conduit à la définition de deux nouvelles familles d’algorithmes, les approches ACL (Asymmetric Composition on Lie Groups) et BCL (Bidirectional Composition on Lie Groups) qui permettent d’améliorer les performances en présence de niveaux de bruit asymétriques (Rapport Signal sur Bruit différent dans les images). L’ensemble des approches introduites sont validées sur des données synthétiques et sur des données réelles capturées dans des conditions de faible luminosité. / Parametric image alignment is a fundamental task of many vision applications such as object tracking, image mosaicking, video compression and augmented reality. To recover the motion parameters, direct image alignment works by optimizing a pixel-based difference measure between a moving image and a fixed-image called template. In the last decade, many efficient algorithms have been proposed for parametric object tracking. However, those approaches have not been evaluated for aligning images of low SNR (Signal to Noise ratio) such as images captured in low-light conditions. In this thesis, we propose a new formulation of image alignment called Bidirectional Framework for unifying existing state of the art algorithms. First, this framework allows us to produce new insights on existing approaches and in particular on the ESM (Efficient Second-order Minimization) algorithm. Subsequently, we provide a theoretical analysis of image noise on the alignment process. This yields the definition of two new approaches : the ACL (Asymmetric Composition on Lie Groups) algorithm and the BCL (Bidirectional Composition on Lie Groups) algorithm, which outperform existing approaches in presence of images of different SNR. Finally, experiments on synthetic and real images captured under low-light conditions allow to evaluate the new and existing approaches under various noise conditions.
|
32 |
Implementação de um algoritmo multi-escala para sistemas de equações lineares de grande porte mal condicionados provenientes da discretização de problemas elípticos em dinâmica de fluidos em meios porosos / Implementation of a multiscale algorithm for the solution of ill-conditioned large linear systems obtained by the discretization of elliptic problems in fluid dynamicsFerraz, Paola Cunha, 1988- 26 August 2018 (has links)
Orientador: Eduardo Cardoso de Abreu / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:28:13Z (GMT). No. of bitstreams: 1
Ferraz_PaolaCunha_M.pdf: 6535346 bytes, checksum: 5f9c9ba53cd3e63fc60c09c90ad2c625 (MD5)
Previous issue date: 2015 / Resumo: O foco deste trabalho é aproximação numérica de problemas envolvendo equações diferenciais parciais (EDPs), de natureza elíptica, no contexto de aplicações em dinâmica de fluidos em meios porosos. Especificamente, a dissertação pretende contribuir com uma implementação de um algoritmo multiescala e multigrid, recentemente introduzido na literatura, para resolução aproximada de sistemas de equações lineares de grande porte e mal condicionados, proveniente dessa classe de EDPs, tipicamente associada a problemas de Poisson de pressão-velocidade com condições de contornos típicas de fluxo em meios porosos. O problema concreto de Poisson discutido neste trabalho será desacoplado do sistema de transporte de EDPs de convecção-difusão, com convecção dominante, e linearizado por meio do emprego de uma técnica de decomposição de operadores. A metodologia para a discretização do problema elíptico de Poisson é elementos finitos mistos híbridos. A resolução numérica do sistema linear resultante deste procedimento será realizado via um método do tipo Gradientes Conjugados com Pré-condicionamento (PCG) multiescala e multigrid. Combinamos as metodologias multi-escala e multigrid de modo a capturar os distintos comprimentos de onda associados aos diferentes comprimentos de onda do operador diferencial auto-adjunto de Poisson, fortemente influenciado pela heterogeneidade das propriedades geológicas do meio poroso, em particular da permeabilidade absoluta, que pode exibir flutuações em várias ordens de grandeza. Experimentos computacionais em aplicações de problemas de dinâmica de fluidos em meios porosos são apresentados e discutidos para verificação dos resultados obtidos / Abstract: The focus of this work is the numerical approximation of differential problems involving partial differential equations (PDE's) of elliptic nature, in the context of modelling and simulation in fluid dynamics in porous media. The dissertation aims to contribute with an implementation of a multiscale multigrid algorithm, recently introduced in the literature, designed for solving ill-conditioned large linear systems of equations derived from those classes of PDE's, typically associated with Poisson problems of pressure-velocity with boundary conditions typical of flow in porous media. The Poisson problem discussed here is identified from the coupled convection-diffusion transport system counterpart of PDE's, with dominated convection, and by a linearization by means the use of an operator splitting approach. The methodology used for the discretization of the Poisson elliptic problem is by mixed hybrid finite elements. The numerical solution of the resulting linear system will be addressed by a multiscale multigrid preconditioned conjugate gradient (PCG) method. We combine both methodologies in order to capture the distinct wavelengths associated with the different wavelengths from the assosiated self-adjoint Poisson operator, strongly influenced by the heterogeneity of the geological properties of the porous media, in particular to the absolute permeability tensor, which in turn might exhibit very large fluctuations of orders of magnitude. Numerical experiments in applications of fluid dynamics problems in porous media are presented and discussed for a verification of the results obtained by direct numerical simulations with the multiscale multigrid algorithm under consideration / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
|
33 |
Résolution de processus décisionnels de Markov à espace d'état et d'action factorisés - Application en agroécologie / Solving Markov decision processes with factored state and action spaces - Application in agroecologyRadoszycki, Julia 09 October 2015 (has links)
Cette thèse porte sur la résolution de problèmes de décision séquentielle sous incertitude,modélisés sous forme de processus décisionnels de Markov (PDM) dont l’espace d’étatet d’action sont tous les deux de grande dimension. La résolution de ces problèmes avecun bon compromis entre qualité de l’approximation et passage à l’échelle est encore unchallenge. Les algorithmes de résolution dédiés à ce type de problèmes sont rares quandla dimension des deux espaces excède 30, et imposent certaines limites sur la nature desproblèmes représentables.Nous avons proposé un nouveau cadre, appelé PDMF3, ainsi que des algorithmesde résolution approchée associés. Un PDMF3 est un processus décisionnel de Markov àespace d’état et d’action factorisés (PDMF-AF) dont non seulement l’espace d’état etd’action sont factorisés mais aussi dont les politiques solutions sont contraintes à unecertaine forme factorisée, et peuvent être stochastiques. Les algorithmes que nous avonsproposés appartiennent à la famille des algorithmes de type itération de la politique etexploitent des techniques d’optimisation continue et des méthodes d’inférence dans lesmodèles graphiques. Ces algorithmes de type itération de la politique ont été validés sur un grand nombre d’expériences numériques. Pour de petits PDMF3, pour lesquels la politique globale optimale est disponible, ils fournissent des politiques solutions proches de la politique globale optimale. Pour des problèmes plus grands de la sous-classe des processus décisionnels de Markov sur graphe (PDMG), ils sont compétitifs avec des algorithmes de résolution de l’état de l’art en termes de qualité. Nous montrons aussi que nos algorithmes permettent de traiter des PDMF3 de très grande taille en dehors de la sous-classe des PDMG, sur des problèmes jouets inspirés de problèmes réels en agronomie ou écologie. L’espace d’état et d’action sont alors tous les deux de dimension 100, et de taille 2100. Dans ce cas, nous comparons la qualité des politiques retournées à celle de politiques expertes. Dans la seconde partie de la thèse, nous avons appliqué le cadre et les algorithmesproposés pour déterminer des stratégies de gestion des services écosystémiques dans unpaysage agricole. Les adventices, plantes sauvages des milieux agricoles, présentent desfonctions antagonistes, étant à la fois en compétition pour les ressources avec la cultureet à la base de réseaux trophiques dans les agroécosystèmes. Nous cherchons à explorerquelles organisations du paysage (ici composé de colza, blé et prairie) dans l’espace etdans le temps permettent de fournir en même temps des services de production (rendementen céréales, fourrage et miel), des services de régulation (régulation des populationsd’espèces adventices et de pollinisateurs sauvages) et des services culturels (conservationd’espèces adventices et de pollinisateurs sauvages). Pour cela, nous avons développé unmodèle de la dynamique des adventices et des pollinisateurs et de la fonction de récompense pour différents objectifs (production, maintien de la biodiversité ou compromisentre les services). L’espace d’état de ce PDMF3 est de taille 32100, et l’espace d’actionde taille 3100, ce qui en fait un problème de taille conséquente. La résolution de ce PDMF3 a conduit à identifier différentes organisations du paysage permettant d’atteindre différents bouquets de services écosystémiques, qui diffèrent dans la magnitude de chacune des trois classes de services écosystémiques. / This PhD thesis focuses on the resolution of problems of sequential decision makingunder uncertainty, modelled as Markov decision processes (MDP) whose state and actionspaces are both of high dimension. Resolution of these problems with a good compromisebetween quality of approximation and scaling is still a challenge. Algorithms for solvingthis type of problems are rare when the dimension of both spaces exceed 30, and imposecertain limits on the nature of the problems that can be represented.We proposed a new framework, called F3MDP, as well as associated approximateresolution algorithms. A F3MDP is a Markov decision process with factored state andaction spaces (FA-FMDP) whose solution policies are constrained to be in a certainfactored form, and can be stochastic. The algorithms we proposed belong to the familyof approximate policy iteration algorithms and make use of continuous optimisationtechniques, and inference methods for graphical models.These policy iteration algorithms have been validated on a large number of numericalexperiments. For small F3MDPs, for which the optimal global policy is available, theyprovide policy solutions that are close to the optimal global policy. For larger problemsfrom the graph-based Markov decision processes (GMDP) subclass, they are competitivewith state-of-the-art algorithms in terms of quality. We also show that our algorithmsallow to deal with F3MDPs of very large size outside the GMDP subclass, on toy problemsinspired by real problems in agronomy or ecology. The state and action spaces arethen both of dimension 100, and of size 2100. In this case, we compare the quality of thereturned policies with the one of expert policies. In the second part of the thesis, we applied the framework and the proposed algorithms to determine ecosystem services management strategies in an agricultural landscape.Weed species, ie wild plants of agricultural environments, have antagonistic functions,being at the same time in competition with the crop for resources and keystonespecies in trophic networks of agroecosystems. We seek to explore which organizationsof the landscape (here composed of oilseed rape, wheat and pasture) in space and timeallow to provide at the same time production services (production of cereals, fodder andhoney), regulation services (regulation of weed populations and wild pollinators) andcultural services (conservation of weed species and wild pollinators). We developed amodel for weeds and pollinators dynamics and for reward functions modelling differentobjectives (production, conservation of biodiversity or trade-off between services). Thestate space of this F3MDP is of size 32100, and the action space of size 3100, which meansthis F3MDP has substantial size. By solving this F3MDP, we identified various landscapeorganizations that allow to provide different sets of ecosystem services which differ inthe magnitude of each of the three classes of ecosystem services.
|
Page generated in 0.0792 seconds