Spelling suggestions: "subject:"gradientlike"" "subject:"verdienstelike""
1 |
Structure of attractors and estimates of their fractal dimension / Estrutura de atratores e estimativas de suas dimensões fractaisBortolan, Matheus Cheque 08 March 2013 (has links)
This work is dedicated to the study of the structure of attractors of dynamical systems with the objective of estimating their fractal dimension. First we study the case of exponential global attractors of some generalized gradient-like semigroups in a general Banach space, and estimate their fractal dimension in terms of themaximumof the dimension of the local unstablemanifolds of the isolated invariant sets, Lipschitz properties of the semigroup and rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, \'A POT. \') is an attractor-repeller pair for the attractor A of a semigroup {T (t ) : t 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of \'A POT. \', the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. Also, making use of the skew product semiflow and its Morse decomposition, we give some estimates of the fractal dimension of the pullback attractors of non-autonomous dynamical systems / Este trabalho é dedicado ao estudo da estrutura dos atratores de sistemas dinâmicos com o objetivo de obter estimativas de suas dimensões fractais. Primeiramente estudamos o caso de atratores globais exponenciais de alguns semigrupos gradient-like generalizados em um espaço de Banach geral, e estimamos suas dimensões fractais em termos da máxima dimensão das variedades instáveis locais dos conjuntos invariantes isolados, a propriedades de Lipschitz do semigrupo e da taxa de atração exponencial. Também generalizamos este resultado para alguns processos de evoluções especiais, introduzindo um conceito de decomposição de Morse com atração pullback. Sob hipóteses apropriadas, se (A, \'A POT. \') é um par atrator-repulsor para o atratorA de um semigrupo {T (t ) : t 0}, então a dimensão fractal de A pode ser estimada em termos da dimensão fractal da variedade instável de \'A POT. \', a dimensão fractal de A, as propriedades de Lipschitz do semigrupo e a taxa de atração exponencial. Os ingredientes da demonstração são a noção de semigrupos gradient-like e seus atratores regulares, decomposição de Morse e uma análise fina da estrutura dos atratores. Além disto, fazendo uso do skew product semiflow e sua decomposição de Morse, damos estimativas da dimensão fractal dos atratores pullback de sistêmas dinâmicos não-autônomos
|
2 |
Structure of attractors and estimates of their fractal dimension / Estrutura de atratores e estimativas de suas dimensões fractaisMatheus Cheque Bortolan 08 March 2013 (has links)
This work is dedicated to the study of the structure of attractors of dynamical systems with the objective of estimating their fractal dimension. First we study the case of exponential global attractors of some generalized gradient-like semigroups in a general Banach space, and estimate their fractal dimension in terms of themaximumof the dimension of the local unstablemanifolds of the isolated invariant sets, Lipschitz properties of the semigroup and rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, \'A POT. \') is an attractor-repeller pair for the attractor A of a semigroup {T (t ) : t 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of \'A POT. \', the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. Also, making use of the skew product semiflow and its Morse decomposition, we give some estimates of the fractal dimension of the pullback attractors of non-autonomous dynamical systems / Este trabalho é dedicado ao estudo da estrutura dos atratores de sistemas dinâmicos com o objetivo de obter estimativas de suas dimensões fractais. Primeiramente estudamos o caso de atratores globais exponenciais de alguns semigrupos gradient-like generalizados em um espaço de Banach geral, e estimamos suas dimensões fractais em termos da máxima dimensão das variedades instáveis locais dos conjuntos invariantes isolados, a propriedades de Lipschitz do semigrupo e da taxa de atração exponencial. Também generalizamos este resultado para alguns processos de evoluções especiais, introduzindo um conceito de decomposição de Morse com atração pullback. Sob hipóteses apropriadas, se (A, \'A POT. \') é um par atrator-repulsor para o atratorA de um semigrupo {T (t ) : t 0}, então a dimensão fractal de A pode ser estimada em termos da dimensão fractal da variedade instável de \'A POT. \', a dimensão fractal de A, as propriedades de Lipschitz do semigrupo e a taxa de atração exponencial. Os ingredientes da demonstração são a noção de semigrupos gradient-like e seus atratores regulares, decomposição de Morse e uma análise fina da estrutura dos atratores. Além disto, fazendo uso do skew product semiflow e sua decomposição de Morse, damos estimativas da dimensão fractal dos atratores pullback de sistêmas dinâmicos não-autônomos
|
3 |
Sistemas gradientes, decomposição de Morse e funções de Lyapunov sob perturbação / Gradient systems, Morse decomposition and Lyapunov functions under pertubationCosta, Éder Rítis Aragão 14 March 2012 (has links)
Neste trabalho investigamos a existência de uma função de Lyapunov associada a um sistema de tipo gradiente, semigrupos ou processos de evolução. Para isso, um estudo detalhado da teoria de Morse desempenha um papel decisivo. Como principal consequência deste estudo obtemos a estabilidade dos sistemas gradientes sob perturbação (autônoma ou não). A aplicabilidade dos resultados abstratos que aqui discutimos é exemplificada estudando-se sistemas de equações diferenciais em espaços de Banach com acoplamento unilateral / In this work we investigated the existence of a Lyapunov function associated to a gradient-like system, semigroups or evolution processes. For that, a detailed study of Morse theory plays a central role. As the main consequence of this study we obtain the stability of gradient systems under perturbation (autonomous or not). The applicability of the abstract results discussed here is exemplified by studying systems of differential equations in Banach spaces with unilateral coupling
|
4 |
Sistemas gradientes, decomposição de Morse e funções de Lyapunov sob perturbação / Gradient systems, Morse decomposition and Lyapunov functions under pertubationÉder Rítis Aragão Costa 14 March 2012 (has links)
Neste trabalho investigamos a existência de uma função de Lyapunov associada a um sistema de tipo gradiente, semigrupos ou processos de evolução. Para isso, um estudo detalhado da teoria de Morse desempenha um papel decisivo. Como principal consequência deste estudo obtemos a estabilidade dos sistemas gradientes sob perturbação (autônoma ou não). A aplicabilidade dos resultados abstratos que aqui discutimos é exemplificada estudando-se sistemas de equações diferenciais em espaços de Banach com acoplamento unilateral / In this work we investigated the existence of a Lyapunov function associated to a gradient-like system, semigroups or evolution processes. For that, a detailed study of Morse theory plays a central role. As the main consequence of this study we obtain the stability of gradient systems under perturbation (autonomous or not). The applicability of the abstract results discussed here is exemplified by studying systems of differential equations in Banach spaces with unilateral coupling
|
Page generated in 0.0608 seconds