• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visuell utvärdering av frekvensmodulerat raster på obestruket papper.

Blomqvist, Emilie, Cedergren, Veronica January 2010 (has links)
This thesis investigated if a combination of increased under colour removal (decreasing the total ink limit), normal andincreased density and modern FM-screening could be used to provide a visually better print on uncoated and coated paperin comparison with AM-screening using the same conditions.Two different test groups (one with graphic background, the other with no graphic background) were asked to a visuallyassess the quality of the prints presented in a pair comparison using a reference image.The results show that the FM-screening did not obtain any significant visual difference in comparison with AM-screening,regardless of paper types and density levels. In general however, prints on coated paper were graded higher.
2

Colour proof quality verification

Sundell, Johanna January 2004 (has links)
<p>BACKGROUND </p><p>When a customer delivers a colour proof to a printer, they expect the final print to look similar to that proof. Today it is impossible to control if a match between proof and print is technically possible to reach at all. This is mainly due to the fact that no information regarding the production circumstances of the proof is provided, for instance the printer does not know which proofer, RIP or ICC-profile that was used. Situations where similarity between proof and print cannot be reached and the press has to be stopped are both costly and time consuming and are therefore wished to be avoided.</p><p>PURPOSE </p><p>The purpose of this thesis was to investigate the possibility to form a method with the ability control if a proof is of such good quality that it is likely to produce a print that is similar to it.</p><p>METHOD </p><p>The basic assumption was that the quality of a proof could be decided by spectrally measuring known colour patches and compare those values to reference values representing the same patches printed at optimal press conditions. To decide which and how many patches that are required, literature and reports were studied, then a test printing and a comparison between proofing systems were performed. To be able to analyse the measurement data in an effective way a tool that analyses the difference between reference and measurement data was developed using MATLAB. </p><p>RESULT </p><p>The result was a suggestion for a colour proof quality verification method that consists two parts that are supposed to complement each other.The first one was called Colour proofing system evaluation and is supposed to evaluate entire proofing systems. It consists of a test page containing colour patches, grey balance fields, gradations and photographs. The second part is called Colour proof control and consists of a smaller set of colour patches that is supposed to be attached to each proof. </p><p>CONCLUSIONS </p><p>The method is not complete since more research regarding the difference between measurement results and visual impression is needed. To be able to obtain realistic tolerance levels for differences between measurement- and reference data, the method must be tested in every-day production. If this is done the method is thought to provide a good way of controlling the quality of colour proofs.</p>
3

Colour proof quality verification

Sundell, Johanna January 2004 (has links)
BACKGROUND When a customer delivers a colour proof to a printer, they expect the final print to look similar to that proof. Today it is impossible to control if a match between proof and print is technically possible to reach at all. This is mainly due to the fact that no information regarding the production circumstances of the proof is provided, for instance the printer does not know which proofer, RIP or ICC-profile that was used. Situations where similarity between proof and print cannot be reached and the press has to be stopped are both costly and time consuming and are therefore wished to be avoided. PURPOSE The purpose of this thesis was to investigate the possibility to form a method with the ability control if a proof is of such good quality that it is likely to produce a print that is similar to it. METHOD The basic assumption was that the quality of a proof could be decided by spectrally measuring known colour patches and compare those values to reference values representing the same patches printed at optimal press conditions. To decide which and how many patches that are required, literature and reports were studied, then a test printing and a comparison between proofing systems were performed. To be able to analyse the measurement data in an effective way a tool that analyses the difference between reference and measurement data was developed using MATLAB. RESULT The result was a suggestion for a colour proof quality verification method that consists two parts that are supposed to complement each other.The first one was called Colour proofing system evaluation and is supposed to evaluate entire proofing systems. It consists of a test page containing colour patches, grey balance fields, gradations and photographs. The second part is called Colour proof control and consists of a smaller set of colour patches that is supposed to be attached to each proof. CONCLUSIONS The method is not complete since more research regarding the difference between measurement results and visual impression is needed. To be able to obtain realistic tolerance levels for differences between measurement- and reference data, the method must be tested in every-day production. If this is done the method is thought to provide a good way of controlling the quality of colour proofs.

Page generated in 0.2202 seconds