Spelling suggestions: "subject:"draft enhancement"" "subject:"draft nhancement""
1 |
IFN-α/β Induction by dsRNA and Toll-Like Receptors Shortens Allograft Survival Induced by Costimulation Blockade: A DissertationThornley, Thomas B. 23 October 2006 (has links)
Costimulation blockade protocols are promising alternatives to the use of chronic immunosuppression for promoting long-term allograft survival. However, the efficacy of costimulation blockade-based protocols is decreased by environmental insults such as viral infections. For example, lymphocytic choriomeningitis virus (LCMV) infection at the time of costimulation blockade treatment abrogates skin allograft survival in mice. In this dissertation, we test the hypothesis that viruses shorten allograft survival by activating the innate immune system through pattern-recognition receptors (PRRs), such as toll-like receptors (TLRs).
To investigate the role of innate immunity in shortening allograft survival, costimulation blockade-treated mice were co-injected with TLR2 (Pam3Cys), TLR3 (polyinosinic:polycytidylic acid, poly(I:C)), TLR4 (lipopolysaccharide, LPS), or TLR9 (CpG DNA) agonists, followed by transplantation with skin allografts 7 days later. Costimulation blockade prolonged skin allograft survival that was shortened in mice coinjected with TLR agonists. To investigate the underlying mechanisms of this observation, we used synchimeric mice, which circulate trace populations of anti-H2b transgenic alloreactive CD8+ T cells. In synchimeric mice treated with costimulation blockade, co-administration of all four TLR agonists prevented deletion of alloreactive CD8+ T cells. These alloreactive CD8+ T cells 1) expressed the proliferation marker Ki-67, 2) upregulated CD44, and 3) failed to undergo apoptosis. We also demonstrate that costimulation blockade-treated CD8α-deficient mice exhibit prolonged allograft survival when co-injected with LPS. These data suggest that TLR agonists shorten allograft survival by impairing the apoptosis of alloreactive CD8+T cells.
We further delineate the mechanism by which TLR agonists shorten allograft survival by demonstrating that LPS and poly(I:C) fail to shorten allograft survival in IFNRI- deficient mice. Interestingly, the ability of poly(I:C) to more potently induce IFN-α/β than LPS correlates with its superior abilities to shorten islet allograft survival and induce allo-specific CTL activity as measured by an in vivo cytotoxicity assay. The ability to shorten allograft survival and induce IFN-α/β is a TLR-dependent process for LPS, but is a TLR-independent process for poly(I:C). Strikingly, the injection of IFN-β impairs alloreactive CD8+T cell deletion and shortens allograft survival, similar to LPS and poly(I:C). These data suggest that LPS and poly(I:C) shorten allograft survival by inducing IFN-α/β through two different mechanisms.
Finally, we present data showing that viruses (LCMV, Pichinde virus, murine cytomegalovirus and vaccinia virus) impair alloreactive CD8+T cell deletion and shorten allograft survival, in a manner comparable to LPS and poly(I:C). Similar to LPS, LCMV and MCMV exhibit an impaired ability to shorten allograft survival in MyD88-deficient mice. These data suggest that the MyD88 pathway is required for certain viruses and TLR-agonists to shorten allograft survival.
In this dissertation, we present data supporting an important role for TLRs and IFN- α/β in shortening allograft induced by costimulation blockade. Our findings suggest that targeting these pathways during the peri-transplant period may enhance the efficacy of costimulation blockade protocols in the clinic.
|
Page generated in 0.0814 seconds