• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1138
  • 820
  • 383
  • 144
  • 53
  • 47
  • 29
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • 16
  • Tagged with
  • 3193
  • 958
  • 898
  • 870
  • 866
  • 404
  • 319
  • 288
  • 217
  • 205
  • 201
  • 189
  • 181
  • 158
  • 145
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Development of the Angoumois grain moth, Sitotroga cerealella (Oliv.), in pellets of varied compositions of wheat germ, bran and endosperm under controlled humidities and temperature

Rachesky, Stanley. January 1966 (has links)
Call number: LD2668 .T4 1966 R119 / Master of Science
382

Importance of grain boundary diffusion : an experimental study

Hiscock, Matthew John January 2014 (has links)
This research is concerned with the mechanisms of diffusion in the Earth and the implications of such an understanding. Specifically, this work is concerned with one particular aspect of diffusion: Grain Boundary Diffusion (GBD). An experimental investigation of GBD has been conducted by considering three specific scenarios; GBD of H in stoichiometric Mg-spinel, GBD of Ti in Quartz and GBD of Li in olivine. By considering the GBD of three very different elements it has been possible to synthesise an understanding of some of the mechanisms involved in the process. GBD is potentially a very important process within the Earth with wide ranging implications. Grain boundaries may provide fast pathways for transportation of a range of compatible and incompatible diffusing species in the Earth’s interior – potentially acting as storage locations and also as efficient pathways between different geological reservoirs. It is also potentially very important in the application of a number of techniques including dating and geothermometry and geobarometry. Here, an experimental study of the GBD of H has been carried out with the overall finding that GBD appears to occur at slightly greater yet broadly similar rates to lattice diffusion. This finding is considered in terms of the mantle properties which are affected by the presence and transport of H. A follow up series of experiments was conducted looking at Li diffusion. Li was chosen due to its volatile nature and larger atomic radius as compared to H. As such, it provided a useful test of the hypothesis that the radius of a diffusant might affect its chosen method of diffusion. A third set of experiments were carried out to investigate the GBD of Ti in quartz with particular reference to the TitaniQ geothermo(baro)meter. This set of experiments provided a very useful comparison to the data which had previously been obtained from lighter elements. This investigation has found that a combination of factors including charge, diffusant diameter and the specific mineralogical characteristics of the host phase will define the dominant diffusive mechanism and the size of the contribution made by that mechanism towards observed bulk diffusivities. A characterisation of the temperature dependency of diffusion within each setting has also been completed. As such, it also makes a useful contribution to the current dataset for GBD.
383

Évaluation de la modélisation de la taille de grain de neige du modèle multi-couches thermodynamique SNOWPACK: implication dans l'évaluation des risques d'avalanches

Madore, Jean-Benoît January 2016 (has links)
Résumé: L’Institut pour l'étude de la neige et des avalanches en Suisse (SLF) a développé SNOWPACK, un modèle thermodynamique multi-couches de neige permettant de simuler les propriétés géophysiques du manteau neigeux (densité, température, taille de grain, teneur en eau, etc.) à partir desquelles un indice de stabilité est calculé. Il a été démontré qu’un ajustement de la microstructure serait nécessaire pour une implantation au Canada. L'objectif principal de la présente étude est de permettre au modèle SNOWPACK de modéliser de manière plus réaliste la taille de grain de neige et ainsi obtenir une prédiction plus précise de la stabilité du manteau neigeux à l’aide de l’indice basé sur la taille de grain, le Structural Stability Index (SSI). Pour ce faire, l’erreur modélisée (biais) par le modèle a été analysée à l’aide de données précises sur le terrain de la taille de grain à l’aide de l’instrument IRIS (InfraRed Integrated Sphere). Les données ont été recueillies durant l’hiver 2014 à deux sites différents au Canada : parc National des Glaciers, en Colombie-Britannique ainsi qu’au parc National de Jasper. Le site de Fidelity était généralement soumis à un métamorphisme à l'équilibre tandis que celui de Jasper à un métamorphisme cinétique plus prononcé. Sur chacun des sites, la stratigraphie des profils de densités ainsi des profils de taille de grain (IRIS) ont été complétés. Les profils de Fidelity ont été complétés avec des mesures de micropénétromètre (SMP). L’analyse des profils de densité a démontré une bonne concordance avec les densités modélisées (R[indice supérieur 2]=0.76) et donc la résistance simulée pour le SSI a été jugée adéquate. Les couches d’instabilités prédites par SNOWPACK ont été identifiées à l’aide de la variation de la résistance dans les mesures de SMP. L’analyse de la taille de grain optique a révélé une surestimation systématique du modèle ce qui est en accord avec la littérature. L’erreur de taille de grain optique dans un environnement à l’équilibre était assez constante tandis que l’erreur en milieux cinétique était plus variable. Finalement, une approche orientée sur le type de climat représenterait le meilleur moyen pour effectuer une correction de la taille de grain pour une évaluation de la stabilité au Canada. / Abstract : The snow thermodynamic multi-layer model SNOWPACK was developed in order to address the risk of avalanches by simulating the vertical geophysical and thermophysical properties of snow. Risk and stability assessments are based on the simulation of the vertical variability of snow microstructure (grain size, sphericity, dendricity and bond size), as well as snow cohesion parameters. Previous research has shown a systematic error in the grain size simulations (equivalent optical grain size) over several areas in northern Canada. In order to quantify the simulated errors in snow grain size and associated uncertainties in stability, snow specific surface area (SSA), was measured using a laser-based system measuring snow albedo through an integrating sphere (InfraRed Integrating Sphere, IRIS) at 1310 nm. Optical grain size was retrieved from the IRIS SSA measurements in order to validate the optical equivalent grain radius from simulated SNOWPACK outputs. Measurements occurred during a field campaign conducted during the 2013-2014 winter season in the Canadian Rockies. The two study plots selected are located at Glacier National Park, BC and Jasper National Park, AB. Profiles of density and stratigraphic analysis were completed as well as grain size (IRIS) profiles, combine with snow micropenetrometer (SMP) measurements. Density analysis showed good agreement for the simulated values (R[superscript 2]=0.76) and thus the simulated resistance for the SSI was assumed of reasonable precision. Snow instabilities predicted by SNOWPACK were observed by SMP resistance variation. The optical grain size analysis showed systematic overestimation of the modeled values, in agreement with the current literature. Error in SSA evolution in a rounding environment was mostly constant whereas error in conditions driven by temperature gradient was variable. Finally, it is suggested that a climate-oriented parametrization of the microstructure could represent an improvement for stability assessment in Canada given the variability and size of avalanche terrain.
384

Development of grain amaranthus as a starch crop in China

吳懷祥, Wu, Huaixiang. January 1998 (has links)
published_or_final_version / Botany / Doctoral / Doctor of Philosophy
385

Molecular structure and functional properties of amaranthus starch

Kong, Xiangli., 孔祥礼. January 2009 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
386

The morphology and microstructure of dynamic abnormal grain growth in commercial-purity molybdenum

Noell, Philip James 22 July 2014 (has links)
Dynamic abnormal grain growth (DAGG) is a phenomenon that produces abnormal grain growth at elevated temperatures during plastic deformation. It is distinct from classically studied static abnormal grain growth phenomena in that it only occurs during plastic deformation. Previous investigations of DAGG in a Mo sheet material produced using powder metallurgy techniques observed DAGG grains to grow more rapidly near the sheet surface than near the sheet center. This phenomenon is explored in the present study. A Mo sheet material produced using arc melting techniques is also studied to determine the morphology of DAGG grains. A preference for growth near the sheet center is observed in this material. The through-thickness variations in texture and grain size for both the arc-melted and powder-metallurgy Mo sheet materials are investigated. The preference for growth near the surface in the powder-metallurgy material is due to a through-thickness variation in grain size, with smaller grains near the surface and larger grains near the center. The preference for DAGG grain growth at the center of the arc-melted sheet material is because of very large grains that grow near the sheet surface. These large grains may be the product of multiple abnormal grains occurring near the sheet surface because of texture variation through the sheet thickness. Regardless, the DAGG grain cannot consume these large grains and leaves them as island grains decorating the region near the sheet surface. These results suggest that DAGG is driven primarily by grain boundary curvature. Microstructures that include DAGG grains are investigated with electron backscatter diffraction (EBSD). A new method to evaluate geometrically necessary dislocation densities using EBSD data is derived. DAGG grains are relatively undeformed compared to the polycrystalline microstructure. DAGG grains are not oriented either favorably or unfavorably for slip. Results of the analysis of the grain boundaries between DAGG grains and normal grains do not indicate any special character preference for these grain boundaries. / text
387

Analysis of the effects of treatments on non-linear models for nitrogen response curves, with implications for design

Hudson, Donna January 1995 (has links)
No description available.
388

IDENTIFICATION AND CHARACTERIZATION OF CEREAL GRAIN TISSUES RESISTANT TO RUMEN MICROBIAL DIGESTION USING IN SITU, IN VITRO AND SCANNING ELECTRON MICROSCOPY TECHNIQUES.

DELFINO, FRANCIS JOSEPH. January 1986 (has links)
A series of studies was conducted using SEM in conjunction with chemical analysis, in situ and in vitro digestion techniques, to characterize the anatomical components from barley, corn, sorghum and wheat grains which constitute "fiber" and investigate their susceptibility to rumen microbial digestion. Fractured grains were used to identify anatomical features and cell types prior to and after extraction or digestion. Certain anatomical features, including pericarp tissue, aleurone cells, endosperm cell walls, corneous and floury endosperm tissue and lemma and palea from barley, were easily identifiable in fractured and ground grains, and in neutral detergent extracted or digested residues. In situ and in vitro incubation conditions were varied to assess the effect of concentrate and/or reduction of pH on the disappearance of identifiable grain fractions. In situ incubations were conducted using steers adapted to 0-, 30- and 90% concentrate diets. In vitro inoculum buffered at pH 7 or 6 was provided by a steer fed 0- or 90% concentrate. Tissues resistant to rumen microbial digestion during extended (144-h) in situ incubations and shorter term (12- to 48-h) in vitro incubations were primarily those identified in NDF, and included pericarp, lemma and palea, and small amounts of corneous endosperm. Remaining tissues identified included barley lemma, palea and pericarp; corn pericarp, tip cap and small amounts of corneous endosperm; sorghum pericarp and corneous endosperm with matrix and protein bodies; and wheat pericarp. In vitro disappearance of isolated NDF after 48-h ranged from 43% for barley to 89% for corn. Labile structures included embryonic tissue and portions of endosperm cell walls, protein matrix and residual starch. Resistant tissues included pericarp, aleurone cell walls, tip cap and portions of the corneous endosperm. Relative rankings of NDF digestibility under all conditions studied were similar (corn > sorghum > wheat > barley) whether determined using isolated NDF or calculated from TIVDMD residues. Neither concentrate level fed to the host animal nor pH of the in vitro incubation flask affected rankings among grains, although increasing concentrate level and/or reducing pH appeared to reduce in vitro NDF disappearance. Evaluation of electron micrographs of fractured grains suggested that similar anatomical structures in the various grains differed in their resistance to microbial digestion. For example, pericarp from barley and wheat appeared to be more resistant than that from corn or sorghum. Endosperm of barley was less resistant than that of sorghum.
389

The development of prehistoric grinding technology in the Point of Pines area, east-central Arizona.

Adams, Jenny Lou. January 1994 (has links)
The development of grinding technology is a topic that has not received much attention from archaeologists in the American Southwest. Presented here is a technological approach to ground stone analysis capitalizing on the methods of ethnoarchaeology, experimentation, and use-wear analysis. These methods are applied to an existing collection of ground stone artifacts amassed by the University of Arizona field school's excavation of the Point of Pines sites in east-central Arizona. The heart of the technological approach is the recognition that technological behavior is social behavior and as such is culturally distinct. Both puebloan and nonpuebloan ethnographies provide models for understanding how ground stone tools were used by different cultural groups in daily activities and for making inferences about gender-specific behaviors. Culturally distinct behaviors are sustained through technological traditions, defined as the transmitted knowledge and behaviors with which people learn how to do things. A technological approach is applied to the ground stone assemblages from nine Point of Pines sites that date within eight phases, from A.D. 400 to A.D. 1425-1450. The assemblages are compared and assessed in terms of variation that might reflect developments in grinding technology. Developments may have derived from local innovations or from introduced technological traditions. Assemblage variation is evaluated in light of major events in Point of Pines prehistory, particularly the change from pit house villages to pueblo villages and the immigration of Tusayan Anasazi. Point of Pines grinding technology continued relatively unchanged until late in the occupation. Around the mid-1200s, an Anasazi group immigrated to the Point of Pines area and took up residence in the largest Point of Pines pueblo. Foreign technology was introduced but not immediately adopted by the resident Mogollon. Food grinding equipment of two different designs coexisted for about 100 years, until around A.D. 1400 when there is evidence of a change in the social organization of food grinding. It is this change that signals the blending of Mogollon and Anasazi into Western Pueblo.
390

Experiments with Small Grains in Southern Arizona

Briggs, Ian A., Hawkins, R. S. 01 June 1928 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.

Page generated in 0.0466 seconds