• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 21
  • 16
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Topics in the Exploration of New Physics at the International Linear Collider with the inclusion of Beam Polarization

Patra, Monalisa January 2013 (has links) (PDF)
The Standard Model of particle physics which attempts to describe all matter and all forces in the universe (except gravity),has been in agreement with most of the experiments till date. However theoretically and phenomenologically many questions remain unanswered in the SM. The present and future colliders will help the physicists learn more about the nature of matter and all forces in the universe. In this thesis work we have mainly focused on the physics case of the future linear collider which will be a succession of the presently running Large Hadron Collider in CERN Geneva. As an introduction to the thesis work in Chapter 1 we have discussed in detail about the most planned future collider the International Linear Collider. This collider apart from being a high luminosity machine will have the advantage of beam polarization. Chapter 2 discusses about the basis structure of the Standard Model, along with its many unanswered questions. Some of the theories proposed to take care of these deficiencies are also discussed. These theories apart from explaining the shortcomings of the SM, also predicts many new particles and are thus phenomenologically rich. Exploration of these new physics scenarios can be done many ways. A detailed investigation of the direct production of particles which are not present in the SM spectrum, is one of the techniques provided the particles are within the collider reach. The other is an indirect way, where deviations from SM is studied by a through scrutinization of the SM processes. Provided new physics is observed in either of the way, in the present or future colliders it becomes necessary to pin point them. The main objective of this thesis work has been to look for various scenarios, both in a direct and indirect way and identify them. The different cases of beam polarization is also explored. Overall we find that the full potential of the linear collider can be realized only with the availability of the electron and positron beam polarization, both transverse and longitudinal. We give an overview of the importance of beam polarization and its inclusion in the calculation of e+e- collisions in Chapter 3. In Chapter 4 we have considered the possibility of finger printing the presence of heavy additional Z′bosons that arise naturally in extensions of the Standard Model such as E6 models and left-right symmetric models, through their mixing with the standard model Z boson. They are probed using W pair production and leptonic decay of one of the W’s. The Littlest Higgs Model which addresses the hierarchy problem and where the Z′arises naturally is also considered. By considering a class of observables including total cross sections, energy distributions and angular distributions of decay leptons we find significant deviation from the Standard Model predictions for these quantities with right-handed electrons and left-handed positrons at √s=800 GeV. This process complements the study of fermion pair production processes that have been considered before for discrimination between these models. We have then studied the possibility of identifying a strongly interacting Wboson sector inChapter5 which is consistent with present day Large Hadron Collider searches, at the International Linear Collider with longitudinal as well as transversely polarized electron and positron beams. We account for the final state interaction using a suitable Omnes formalism in terms of a plausible resonance description, and carry out thorough analyses of cross sections, asymmetries and angular distributions of the Ws. In order to have a fully comprehensive study we also carry out a comparison with other extensions of the Standard Model, where an s channel resonance like heavy additional Z′bosons arise naturally. We also consider the effect of the strong final state interaction on a correlation that depends on(φ- - φ+), where the φ∓are the azimuthal angles of decay leptons, and find that it is a useful discriminant. The importance of top polarization in the process e+e−→ tt with transverse beam polarization to probe interactions of the scalar and tensor type beyond the Standard Model and the way to disentangle their individual contributions is discussed in Chapter 6. 90% confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10−3 TeV−2 for real and imaginary parts of both scalar and tensor couplings at √s=500 and 800 GeV with an integrated luminosity of 500 fb−1 and completely polarized beams is shown to be possible. We next consider the process e+e- → γ Z with transverse beam polarization in the presence of anomalous CP-violating γZZ coupling λ1 and γγZ coupling λ2 in Chapter 7. We point out that similar to the approach in Chapter 6 if the final-state spins are resolved, then it becomes possible to fingerprint the anomalous coupling Reλ1. 90% confidence level limit on Reλ1 achievable with center-of-mass energy of 500 GeV or 800 GeV with realistic initial beam polarization and integrated luminosity is of the order of few times of 10−2 when the helicity of Zis used and 10−3 when the helicity of γis used. The resulting corrections at quadratic order to the cross section and its influence on these limits are also evaluated and are shown to be small. In Chapter 8 the production of the lightest neutralinos in the radiative process e+e−→ χ˜10χ˜10γ in supersymmetric models with grand unification is considered. We consider models wherein the standard model gauge group SU(3)c x SU(2)L x U(1)Y is unified in to the grand unified gauge groups SU(5),or SO(10). We compare and contrast the dependence of the signal cross section on the grand unified gauge group, and different representations of the grand unified gauge group, into which the standard model gauge group is unified. We carry out a comprehensive study of the radiative production process which includes higher order QED corrections in our calculations. In addition we carry out a detailed study of the background to the signal process coming from the Standard Model radiative neutrino production e+e−→ νv*γ, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e+e ν˜ν˜γ. The latter can be a major supersymmetric background to the radiative production of neutralinos when the sneutrinos decay invisibly. Finally in Chapter 9, we conclude and present the summary of the thesis.
22

Randall-Sundrum Model as a Theory of Flavour

Iyer, Abhishek Muralidhar January 2013 (has links) (PDF)
The discovery of the Higgs boson by the LHC provided the last piece of the puzzle neces- sary for the Standard Model (SM) to be a successful theory of electroweak scale physics. However there exist various phenomenological reasons which serve as pointer towards the existence of physics beyond the Standard Model. For example the explanation for the smallness of the neutrino mass, baryon asymmetry of the universe, the presence of dark matter and dark energy etc. are not within purview of the Standard Model. Con- ceptual issues like the gauge hierarchy problem, weakness of gravity provide some of the theoretical motivation to pursue theories beyond the SM. We consider scenarios with warped extra-dimensions (Randall-Sundrum (RS) Model ) as our preferred candidate to answer some of the questions raised above. RS model gives an elegant geometric solution to address the hierarchy between the two fundamental scales of nature i.e. Planck scale and electroweak scale. In addition to this, the geometry of RS serves as a useful setup wherein the fermion mass hierarchy problem can also be solved. The goal of this thesis is to investigate whether RS model can be an acceptable theory of avour while at the same time serving as a solution to the hierarchy problem. In Chapter[1] we begin with a brief introduction of the SM, highlighting issues which pro- vides the necessary motivation for constructing new physics models. Various candidates of Beyond Standard Model (BSM) physics are introduced and a few preliminaries es- sential to understand frameworks with additional spatial-dimensions ( at and warped) is provided. In Chapter[2] we specialize to the case of warped extra-dimensions and motivate the need to have the SM elds in the bulk. Mathematical details related to the analysis of various spin elds (0; 12; 1 and 2) in a warped background necessary to understand relevant phenomenology is provided. The lack of knowledge of Dirac or Majorana nature of the neutrino leads to a wide variety of possibilities as far as neutrino mass generation is concerned. In Chapter[3] we focus on the leptonic sector where three cases of neutrino mass generation are consid- ered: a)Planck Scale lepton number violation (LLHH case) b) Dirac neutrinos c) Bulk Majorana mass terms. We then study the implications of each case on the charged lepton mass tting. The case with Planck scale lepton number violation in normal RS scenario requires large and negative values for the bulk mass parameters for the charged singlets cE. Dirac neutrinos and the case with Bulk Majorana mass terms give good t to data. For completeness, the ts for the hadronic sector is provided in the appendix. In Chapter[4] avour violation for each of three cases introduced in Chapter[3] is studied. For the case with Planck scale lepton number violation, the non-perturbative Yukawa coupling between the SM singlets and the KK states render the higher order diagrams incalculable. Lepton avour violation (LFV) is particularly large for the Dirac case and the bulk Majorana case for low Kaluza-Klein(KK) mass scales. We then invoke the ansatz of Minimal Flavour violation to suppress LFV with low lying KK scales and examples of avour group is provided for both cases. In Chapter[5] we present an example with a type II two Higgs doublet model applied to the LLHH case. The setup o ers a solution where LLHH scenario can be consistently realized in RS model, where the masses and mixing angles in the leptonic sector can bet with O(1) choice of bulk parameters. Assumption of global lepton number conservation (like in Dirac neutrinos) could lead to problems in theories of quantum gravity where it does not hold. This leads us to the question whether Dirac neutrinos can be naturally realized in nature. In Chapter[6] we consider the special case of bulk Majorana mass encountered in Chapter[3] where the bulk Dirac mass terms for the right handed neutrino is set to zero. We nd that this leads to a case where the e ective zero mode neutrino mass is of Dirac type with negligible e ects from the tower of Majorana states. In Chapter[7] we consider RS at the GUT scale which no longer serves as a solution to the hierarchy problem. SUSY is introduced in the bulk and the low energy SUSY serves as a solution to the hierarchy problem. Such models serve as a useful alternative to SUSY models with family symmetries (e.g. Froggatt-Nielsen Model). However the solutions to the Yukawa hierarchy problem are constrained due to anomaly cancellation conditions. In Chapter[8] supersymmetry breaking due to radion mediation in addition to brane localized sources is considered and detailed analysis of the running of soft masses and the low energy avour observables is considered for both cases separately. In Chapter[9] we conclude and present future directions.
23

Search for new heavy narrow resonances decaying into a dielectron pair with the CMS detector

Thomas, Laurent 07 October 2014 (has links)
Le sujet de la présente thèse porte sur la recherche de nouvelles particules très massives se désintégrant en une paire électron-positron avec le détecteur CMS.<p>Le démarrage en 2010 du Large Hadron Collider au CERN marque le début d'une nouvelle ère en physique des particules. L'énergie et l'intensité de ses faisceaux de protons, inégalées à ce jour, offre en effet la possibilité d'étudier les lois décrivant les constituants ultimes de la matière et leurs interactions à des énergies jusqu'alors inaccessibles et d'étudier des processus rares. <p>La découverte récente par les expériences ATLAS et CMS du boson scalaire prédit par la théorie de la brisure de symétrie électro-faible constitue ainsi la première percée du programme de recherche du LHC et confirme la théorie actuelle décrivant la physique subatomique, le Modèle Standard. <p>Il est cependant largement admis que cette théorie, bien que hautement prédictive et jamais mise en défaut expérimentalement jusqu'à présent, ne constitue qu'une approximation à basse énergie d'une théorie plus fondamentale. <p>Cette thèse décrit la recherche de nouvelles particules, prédites par plusieurs modèles au delà du Modèle Standard, via leur désintégration en une paire électron-positron de haute énergie. <p>La reconstruction et la sélection des électrons de haute énergie par le détecteur CMS sont des éléments centraux de cette analyse et sont étudiées en détail. Divers critères sont développés afin de distinguer les électrons des autres types d'objets physiques produits lors de collisions de protons, tels que les jets. L'intensité des faisceaux du LHC est telle que plusieurs collisions ont lieu simultanément dans le détecteur et il est montré que l'efficacité de sélection des électrons dépend fortement du nombre de ces interactions. Une technique est donc mise au point pour corriger cet effet. <p>Une méthode pour mesurer l'efficacité de la sélection directement sur les données est également développée. Celle-ci permet de confirmer les mesures obtenues à partir de simulations, jusqu'à des impulsions transverses de plusieurs centaines de GeV. <p>Le spectre de masse des paires diélectron est établi pour les données enregistrées en 2012 à une énergie dans le centre de masse des protons de 8 TeV, et un excès localisé d'événements est recherché. Aucune déviation significative par rapport au bruit de fonds attendu n'est observée et des limites très contraignantes sont établies sur le rapport de la section efficace de production d'une nouvelle résonance diélectronique et de celle mesurée au pic du boson Z. Ces résultats sont utilisés pour fixer des limites inférieures sur la masse de nouvelles particules prédites par certains modèles. <p>Le redémarrage du LHC en 2015 avec une énergie de 6.5 TeV par faisceau de proton élargira fortement le potentiel de découverte de ces résonances. En cas de découverte d'un signal, ses propriétés (telles que le spin ou l'asymétrie avant-arrière) seront étudiées avec attention. Des projections sur la précision qui pourrait alors être atteinte pour ces mesures sont donc finalement présentées en fonction de la luminosité intégrée collectée. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
24

Matter asymmetry and gauge unification

Cosme, Nicolas 28 September 2004 (has links)
Pourquoi reste-t-il de la matière dans l’univers ?Depuis la découverte de l’anti-matière, miroir de la matière dont nous sommes constitués et s’annihilant de prime abord parfaitement avec cette dernière, ce mystère stimule l’étude des propriétés communes et distinctes entre particules et anti-particules.<p><p>Dans ce cadre, il a été établi au vu des interactions dites de jauge (en particulier les interactions électrofaibles) que la symétrie intrinsèque entre particules et anti-particules est la combinaison subtile du conjugué de charge (C) et de la parité d’espace (P) :la symétrie CP. Ainsi, un comportement distinct entre matière et anti-matière est caractérisé au niveau fondamental par une violation de CP.<p>D’une part, une telle violation a été mise en évidence expérimentalement dans la désintégration de mesons K et B, où la production de particules dans certains canaux est favorisée. D’autre part, la violation de CP est l’une des conditions requises à la création d’un excès de matière durant l’évolution de l’univers. <p><p>Dans la présente thèse, nous étudions deux aspects de cette asymétrie entre matière et anti-matière.<p>Tout d’abord, un scénario de création d’un excès de matière dans l’évolution de l’univers basé sur la désintégration de neutrinos lourds est étudié. Les récents résultats expérimentaux sur l’existence d’une masse pour les neutrinos rendent très attractif ce scénario. Bien que le schéma général repose uniquement sur les interactions liées à la masse des particules (secteur scalaire), nous le prolongeons ici dans la perspective plus naturelle de l’unification des interactions de jauge, seule motivation complète à l’inclusion de neutrinos lourds dans le spectre des particules. L’inclusion d’interactions de jauge liées aux neutrinos lourds complète ainsi la description. Les résultats tirés sur les paramètres de masse des neutrinos, grandes inconnues de la physique des particules, s’en voient modifiés de manière importante.<p><p>Ensuite, la question de l’origine de la violation de CP est posée. En effet, dans la description standard des interactions faibles, la violation de CP est explicite et résulte uniquement de la liberté pour les couplages de masse (couplages de Yukawa) d’être des nombres complexes. Ainsi, aucune compréhension fondamentale sur la différence de comportement entre particules et anti-particules n’est apportée.<p>Nous proposons dans ce sens une source de violation de CP par la compactification d’une théorie de jauge dans un espace de dimensions étendues. A partir de couplages réels, une valeur classique de la composante supplémentaire des bosons de jauge fournit une masse effective complexe aux fermions. Les conditions de l’obtention d’une violation de CP physique sont alors étudiées. Nous identifions la structure minimale pour rendre compte des interactions électrofaibles tout en incluant une source de violation de CP dans ce contexte. L’unification avec les interactions fortes est alors établie dans une structure qui apporte une lumière différente sur les schémas d’unification usuels.<p> / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished

Page generated in 0.0823 seconds