Spelling suggestions: "subject:"granzymes"" "subject:"granzyme""
1 |
Strategies to identify granzyme J /Tinangon, Maria M. January 2001 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2001. / Includes bibliographical references. Online version available on the World Wide Web.
|
2 |
Serine and cysteine protease inhibitors for blockade of cell mediated cytotoxicity /Koot, Gretchen E. January 2002 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2002. / Includes bibliographical references. Online version available on the World Wide Web.
|
3 |
Measurement, inhibition, and killing mechanisms of cytotoxic granule serine proteasesEwen, Catherine L 06 1900 (has links)
Natural killer (NK) cells and cytotoxic T lymphocytes (CTL) are critical for the protection of organisms against pathogens and cancer. The process by which these cells eliminate infected or transformed cells are through two basic mechanisms, receptor-mediated interactions, or delivery of contents from intracellular cytotoxic granules. Granules are comprised of perforin and a family of serine proteases, called granzymes. Upon entry into target cells, these proteins work together to initiate cellular death pathways. Previous and extensive biochemical studies had already established that granzyme B (GrB) was a powerful inducer of apoptosis, but sensitive assays to confirm its release from cytotoxic cells were lacking. We hypothesized that GrB release, measured by ELISPOT, directly assessed the lytic potential of antigen-specific cytotoxic cells. Indeed, data provided in this thesis established a strong correlation between GrB release and target cell lysis. Our results imply that GrB could be a promising tool to assess cell-mediated immunity during vaccine development.
However, several other independent studies in grB-/- mice demonstrated that additional granzymes were capable of clearing viruses and tumorigenic cells. Granzyme H (GrH) is highly and constitutively expressed in human NK cells, and therefore, we hypothesized that it was also an effective cytotoxic molecule. Our experiments established that GrH-induced cell death by a mechanism distinct from those of GrB and Fas. We identified a GrH substrate, DFF45/ICAD, and showed that GrH induced mitochondrial damage through a Bid-independent mechanism. Furthermore, cell death was dependent on Bax and/or Bak, but independent of caspase activation. Hence, we have elucidated an alternative cytotoxic pathway that could be employed to eliminate target cells with immune evasion strategies targeted to GrB or Fas.
Finally, control of serine proteases by endogenous inhibitors is important to numerous biological processes, including apoptosis. We hypothesized that as GrH displayed chymase activity, the serine protease inhibitor anti-chymotrypsin (ACT) would impair GrH function. Our data established that ACT effectively attenuated GrH cytotoxicity and prevented proteolysis of a GrH substrate. Collectively, this thesis describes a novel GrH inhibitor, provides a new tool to evaluate cell-mediated immunity, and provides evidence of an alternative mechanism of cytotoxicity.
|
4 |
Measurement, inhibition, and killing mechanisms of cytotoxic granule serine proteasesEwen, Catherine L Unknown Date
No description available.
|
5 |
The relevance of specific molecular and cellular effectors during murine cytomegalovirus infectionSumaria, Nital January 2008 (has links)
[Truncated abstract] The design and development of effective anti-viral immunotherapies requires a comprehensive understanding of the cellular and molecular processes that are involved in the generation and regulation of immune responses. The fundamental objective of the immune system is to successfully complete the task of eliminating/controlling the invading pathogen without causing overt pathology. Cytomegaloviruses (CMVs) are large DNA viruses that are able to evade immune attack and persist lifelong within the host. In a healthy host, CMV causes an asymptomatic infection, but in instances of decreased immune functions, such as in newborns, acquired immunodeficiency syndrome (AIDS) patients and transplant recipients, the infection can result in serious morbidity and mortality. Thus, human CMV (HCMV) is a clinically important pathogen and an understanding of the pathogenesis, mechanisms of immune subversion and, importantly the cascade of immune events that ensue following infection is highly relevant. The studies presented in this thesis have provided useful insight into various aspects of viral immunity and it is hoped that they will assist in the design of more effective therapies against viruses of clinical importance. Genetic variability in humans can greatly influence anti-viral immune responses and the outcome of viral infection. ... Furthermore, these studies provide novel evidence that NK cells are also crucial for the control of virus in some organs of susceptible mice during early acute infection. The data reveals that both NK cells and CD8+ T cells utilise perforin- and IFN-? dependent control of MCMV. Furthermore, these studies provide novel evidence that protection mediated by Ly49H+ NK cells in resistant mice is dependent on perforin. Chapter 3 focuses on the biological relevance of Grz during MCMV infection. These studies found that GrzA and GrzB are essential components of the machinery involved in limiting MCMV during acute infection. These analyses also provide the first evidence suggesting that GrzM plays a role, albeit minor, in controlling MCMV replication. Furthermore, the current studies suggest that Grz can mediate direct antiviral activities independent of the induction of cell death in conjunction with perforin. Interestingly, in the absence of both GrzA and GrzB (GrzAB), mice were as susceptible to MCMV infection as perforin-deficient mice. However, unlike perforin-deficient mice, GrzAB-deficient mice controlled and survived the infection. In Chapter 4 the roles of perforin, GrzA and GrzB in anti-viral immunity and immunopathology during MCMV infection were examined. These studies show that NK cell-derived perforin is required to eliminate infected targets as well as activated effector cells, suggesting that NK cells are crucial not only in defensive immunity but also in limiting the immune activation that follows MCMV infection. In summary, the studies presented in this thesis define the significant role played by specific effector molecules in limiting MCMV replication during different stages of this viral infection. Furthermore, these studies provide novel evidence that perforin, GrzA and GrzB play distinct roles in defensive immunity and limiting immunopathology during MCMV infection.
|
6 |
Immunological assays relevant to definition of bovine theileria parva-specific cytotoxic CD8+ T cell responsesMusembi, Susan Mbithe January 2012 (has links)
A major objective in Theileria parva subunit vaccine development is to induce a vaccine antigen specific response mediated by cytotoxic CD8+ T cells (CTL). Therefore it is essential to be able to measure the frequency of the responding CD8+ T cells after vaccination and correlate it with a clinical outcome on challenge. Recently concluded immunogenicity and efficacy studies of T. parva specific CTL antigens showed successful induction of CTL responses in some animals, which correlated with reduced disease severity after challenge. To provide correlates of immunity antigen-specific CD8+ T cell mediated IFN-γ responses and CTL lytic responses were measured over the course of the experiments. Several challenges presented in these trials aimed at optimising vaccine efficacy. While the IFN-γ ELISPOT is a sensitive and reliable assay widely used in vaccine research, the use of chromium/indium release assay remains to be the only assay in use that measures T. parva-specific CTL activity. Hence the overall goal of the study was to develop novel reagents and novel assays to identify parasite-specific CD8+ T lymphocytes with lytic potential. To address this objective, bovine perforin, granzymes A and B, as specific effector proteins expressed in activated CTL were cloned and expressed using a baculovirus expression system. Sequence analysis of the cloned cDNAs showed the isolated cDNA belonged to the perforin and granzyme sub-families respectively. Perforin cDNA demonstrated 85% homology to human perforin with presence of conserved regions resembling calcium binding motif, membrane attack complex component as well complement protein. The sequences encoded by the cloned granzyme A and B cDNAs have the features of a trypsin like serine protease and demonstrates over 70% homology to the human cDNA over the active enzyme region as well catalytic residues characteristic of serine proteases. The expressed polypeptides of all three proteins were used to produce specific antibodies for use as reagents in immunoassays including ELISpot and intracellular staining for flow cytometric analysis. While the antibodies showed reactivity to the recombinant proteins, these reagents displayed different functionality in the recognition of the native protein. Peptide-major histocompatibility complexes (MHC) class I tetrameric complexes (tetramers) are proving invaluable as fluorescent reagents for enumeration, characterisation and isolation of peptide-specific CD8+ T cells and have afforded advantages to phenotype antigen-specific T cells with minimal in vitro manipulation. Fluorescent bovine tetramers were shown to specifically stain antigen-specific CTL by directly binding the T cell receptor (TCR). Analyses of CD8 T-cell responses in live-vaccine immunised cattle also showed that this method is robust and demonstrates changes in the kinetics and specificity of the CD8+ T cell response in primary and secondary infections with T. parva. On average, results of functional assays and tetramer staining followed parallel trends, measured roughly the same populations and allowed for surface and intracellular staining for CD8 T cell marker and perforin, respectively, demonstrating a method that reliably quantifies the frequency, phenotype and function of specific CD8+ T cells. The technical simplicity, rapidity and ability of the flow cytometric technique described in this thesis to measure low frequency antigen-specific responses suggests that tetramer staining, combined with functional assays could be broadly applicable to the valuation of vaccination efficacy to determine which protocols are most successful in inducing CTL responses.
|
Page generated in 0.0452 seconds