• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The relevance of specific molecular and cellular effectors during murine cytomegalovirus infection

Sumaria, Nital January 2008 (has links)
[Truncated abstract] The design and development of effective anti-viral immunotherapies requires a comprehensive understanding of the cellular and molecular processes that are involved in the generation and regulation of immune responses. The fundamental objective of the immune system is to successfully complete the task of eliminating/controlling the invading pathogen without causing overt pathology. Cytomegaloviruses (CMVs) are large DNA viruses that are able to evade immune attack and persist lifelong within the host. In a healthy host, CMV causes an asymptomatic infection, but in instances of decreased immune functions, such as in newborns, acquired immunodeficiency syndrome (AIDS) patients and transplant recipients, the infection can result in serious morbidity and mortality. Thus, human CMV (HCMV) is a clinically important pathogen and an understanding of the pathogenesis, mechanisms of immune subversion and, importantly the cascade of immune events that ensue following infection is highly relevant. The studies presented in this thesis have provided useful insight into various aspects of viral immunity and it is hoped that they will assist in the design of more effective therapies against viruses of clinical importance. Genetic variability in humans can greatly influence anti-viral immune responses and the outcome of viral infection. ... Furthermore, these studies provide novel evidence that NK cells are also crucial for the control of virus in some organs of susceptible mice during early acute infection. The data reveals that both NK cells and CD8+ T cells utilise perforin- and IFN-? dependent control of MCMV. Furthermore, these studies provide novel evidence that protection mediated by Ly49H+ NK cells in resistant mice is dependent on perforin. Chapter 3 focuses on the biological relevance of Grz during MCMV infection. These studies found that GrzA and GrzB are essential components of the machinery involved in limiting MCMV during acute infection. These analyses also provide the first evidence suggesting that GrzM plays a role, albeit minor, in controlling MCMV replication. Furthermore, the current studies suggest that Grz can mediate direct antiviral activities independent of the induction of cell death in conjunction with perforin. Interestingly, in the absence of both GrzA and GrzB (GrzAB), mice were as susceptible to MCMV infection as perforin-deficient mice. However, unlike perforin-deficient mice, GrzAB-deficient mice controlled and survived the infection. In Chapter 4 the roles of perforin, GrzA and GrzB in anti-viral immunity and immunopathology during MCMV infection were examined. These studies show that NK cell-derived perforin is required to eliminate infected targets as well as activated effector cells, suggesting that NK cells are crucial not only in defensive immunity but also in limiting the immune activation that follows MCMV infection. In summary, the studies presented in this thesis define the significant role played by specific effector molecules in limiting MCMV replication during different stages of this viral infection. Furthermore, these studies provide novel evidence that perforin, GrzA and GrzB play distinct roles in defensive immunity and limiting immunopathology during MCMV infection.
2

Effects of murine cytomegalovirus infection on dendritic cell functionality and natural killer cell responses

Andrews, Daniel Mark January 2004 (has links)
Cytomegaloviruses (CMVs) are ubiquitous in nature, having evolved over many millenia with their hosts. While in healthy hosts most infections with CMV are asymptomatic, the virus can cause severe disease in immunocompromised hosts. Thus, the increase in organ transplantation and the HIV/AIDS pandemic have established human CMV (HCMV) as a clinically important pathogen. Indeed, HCMV infections are now the major cause of morbidity and mortality among immunocompromised patients, which has led to more research targeting CMV for effective anti-viral treatment. The discovery that cytomegaloviruses encode several genes which are involved in immune escape has prompted a new area of research, aimed at understanding immune escape mechanisms for exploitation as potential anti-viral therapeutics. By targeting the viral proteins directly, or their receptors in the host, it may be possible to treat CMV disease by agonistic/antagonistic therapy. The first part of this thesis describes the first demonstration of anti-NK1.1 staining in situ to identify NK cells using a modified in vivo perfusion/fixation method. Using this method, we have compared the acute NK1.1+ cellular response to wild-type MCMV infection in the visceral organs of genetically susceptible intra-NK complex recombinant BALB.B6-CT6 (Cmv1s, NK1.1+) mice with resistant C57B⁄J (Cmv1r, NK1.1+) and BALB.B6-Cmv1r mice (Cmv1r, NK1.1+). Expression of viral antigens and the consequences of infection on other cellular subsets, were also analyzed in this study. The data show that in susceptible mice (Cmv1s) MCMV infection is predominent in the marginal zone of splenic white pulp, resulting in local changes in various cellular constituents, including macrophages, NK cells and DC. In the liver, distinct foci of infection were comprised of large numbers of macrophages and NK1.1+ cells surrounding infected cytomegalic cells. In resistant mice (Cmv1r), 6 MCMV infection predominantly affected the red-pulp of the spleen and was associated with increased accumulation of NK1.1+ cells and macrophages at sites of viral infection

Page generated in 0.0411 seconds