• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 761
  • 105
  • 70
  • 58
  • 24
  • 24
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 14
  • 10
  • 7
  • Tagged with
  • 1400
  • 1400
  • 293
  • 201
  • 154
  • 149
  • 124
  • 122
  • 121
  • 121
  • 120
  • 115
  • 109
  • 108
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Fuzzy decision tree classification for high-resolution satellite imagery

Pavuluri, Manoj Kumar. January 2003 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2003. / Typescript. Includes bibliographical references (leaves 70-74). Also available on the Internet.
502

R(W₅, K₅)=27 /

Stinehour, Joshua. January 2004 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2004. / Typescript. Includes bibliographical references (leaves 71-75).
503

New results on broadcast domination and multipacking

Yang, Feiran 31 August 2015 (has links)
Let G be a graph and f be a function that maps V to {0,1,2, ..., diam(G)}. Let V+ be the set of all vertices such that f(v) is positive. If for every vertex v not in V+ there exists a vertex w in V+ such that the distance between v and w is at most f(w), then f is called a dominating broadcast of G. The cost of the broadcast f is the sum of the values f(v) over all vertices v in V. The minimum cost of a dominating broadcast is called the broadcast domination number of G. A subset S of V is a multipacking if, for every v in V and for every integer k which is at least 1 and at most rad(G), the set S contains at most k vertices at distance at most k from v. The multipacking number of G is the maximum cardinality of a multipacking of G. In the first part of the thesis, we describe how linear programming can be used to give a cubic algorithm to find the broadcast domination number and multipacking number of strongly chordal graphs. Next, we restrict attention to trees, and describe linear time algorithms to compute these numbers. Finally, we introduce k-broadcast domination and k-multipacking, develop the basic theory and give a bound for the 2-broadcast domination number of a tree in terms of its order. / Graduate
504

Streamlined and prioritized hierarchical relations: a technique for improving the effectiveness of theclassification-tree methodology

Kwok, Wing-hong., 郭永康. January 2001 (has links)
published_or_final_version / abstract / toc / Computer Science and Information Systems / Master / Master of Philosophy
505

Extremal results on hypergraphs, trees and regular graphs

Haslegrave, John George Ernest January 2011 (has links)
No description available.
506

Parameters related to fractional domination in graphs.

Erwin, D. J. January 1995 (has links)
The use of characteristic functions to represent well-known sets in graph theory such as dominating, irredundant, independent, covering and packing sets - leads naturally to fractional versions of these sets and corresponding fractional parameters. Let S be a dominating set of a graph G and f : V(G)~{0,1} the characteristic function of that set. By first translating the restrictions which define a dominating set from a set-based to a function-based form, and then allowing the function f to map the vertex set to the unit closed interval, we obtain the fractional generalisation of the dominating set S. In chapter 1, known domination-related parameters and their fractional generalisations are introduced, relations between them are investigated, and Gallai type results are derived. Particular attention is given to graphs with symmetry and to products of graphs. If instead of replacing the function f : V(G)~{0,1} with a function which maps the vertex set to the unit closed interval we introduce a function f' which maps the vertex set to {0, 1, ... ,k} (where k is some fixed, non-negative integer) and a corresponding change in the restrictions on the dominating set, we obtain a k-dominating function. In chapter 2 corresponding k-parameters are considered and are related to the classical and fractional parameters. The calculations of some well known fractional parameters are expressed as optimization problems involving the k- parameters. An e = 1 function is a function f : V(G)~[0,1] which obeys the restrictions that (i) every non-isolated vertex u is adjacent to some vertex v such that f(u)+f(v) = 1, and every isolated vertex w has f(w) = 1. In chapter 3 a theory of e = 1 functions and parameters is developed. Relationships are traced between e = 1 parameters and those previously introduced, some Gallai type results are derived for the e = 1 parameters, and e = 1 parameters are determined for several classes of graphs. The e = 1 theory is applied to derive new results about classical and fractional domination parameters. / Thesis (M.Sc.)-University of Natal, 1995.
507

SAFE GAME OF COMPETITIVE DIFFUSION

Vautour, Celeste 19 March 2014 (has links)
Competitive Diffusion is a recently introduced game-theoretic model for the spread of information through social networks. The model is a game on a graph with external players trying to reach the most vertices. In this thesis, we consider the safe game of Competitive Diffusion. This is the game where one player tries to optimize his gain as before, while his opponents' objectives are to minimize the first player's gain. This leads to a safety value for the player, i.e. an optimal minimal expected gain no matter the strategies of the opponents. We discuss safe strategies and present some bounds on the safety value in the two-player version of the game on various graphs. The results are almost entirely on the safe game on trees, including the special cases of paths, spiders and complete trees but also consist of some preliminary studies of the safe game on three other simple graphs. Our main result consists of a Centroidal Safe Strategy (CSS) Algorithm which suggests a safe strategy for a player on any centroidal tree, a tree which has one vertex as centroid, and gives its associated guaranteed gain.
508

Simultaneously Embedding Planar Graphs at Fixed Vertex Locations

Gordon, Taylor 13 May 2010 (has links)
We discuss the problem of embedding planar graphs onto the plane with pre-specified vertex locations. In particular, we introduce a method for constructing such an embedding for both the case where the mapping from the vertices onto the vertex locations is fixed and the case where this mapping can be chosen. Moreover, the technique we present is sufficiently abstract to generalize to a method for constructing simultaneous planar embeddings with fixed vertex locations. In all cases, we are concerned with minimizing the number of bends per edge in the embeddings we produce. In the case where the mapping is fixed, our technique guarantees embeddings with at most 8n - 7 bends per edge in the worst case and, on average, at most 16/3n - 1 bends per edge. This result improves previously known techniques by a significant constant factor. When the mapping is not pre-specified, our technique guarantees embeddings with at most O(n^(1 - 2^(1-k))) bends per edge in the worst case and, on average, at most O(n^(1 - 1/k)) bends per edge, where k is the number of graphs in the simultaneous embedding. This improves upon the previously known O(n) bound on the number of bends per edge for k at least 2. Moreover, we give an average-case lower bound on the number of bends that has similar asymptotic behaviour to our upper bound.
509

On Schnyder's Theorm

Barrera-Cruz, Fidel January 2010 (has links)
The central topic of this thesis is Schnyder's Theorem. Schnyder's Theorem provides a characterization of planar graphs in terms of their poset dimension, as follows: a graph G is planar if and only if the dimension of the incidence poset of G is at most three. One of the implications of the theorem is proved by giving an explicit mapping of the vertices to R^2 that defines a straightline embedding of the graph. The other implication is proved by introducing the concept of normal labelling. Normal labellings of plane triangulations can be used to obtain a realizer of the incidence poset. We present an exposition of Schnyder’s theorem with his original proof, using normal labellings. An alternate proof of Schnyder’s Theorem is also presented. This alternate proof does not use normal labellings, instead we use some structural properties of a realizer of the incidence poset to deduce the result. Some applications and a generalization of one implication of Schnyder’s Theorem are also presented in this work. Normal labellings of plane triangulations can be used to obtain a barycentric embedding of a plane triangulation, and they also induce a partition of the edge set of a plane triangulation into edge disjoint trees. These two applications of Schnyder’s Theorem and a third one, relating realizers of the incidence poset and canonical orderings to obtain a compact drawing of a graph, are also presented. A generalization, to abstract simplicial complexes, of one of the implications of Schnyder’s Theorem was proved by Ossona de Mendez. This generalization is also presented in this work. The concept of order labelling is also introduced and we show some similarities of the order labelling and the normal labelling. Finally, we conclude this work by showing the source code of some implementations done in Sage.
510

Equiangular Lines and Antipodal Covers

Mirjalalieh Shirazi, Mirhamed January 2010 (has links)
It is not hard to see that the number of equiangular lines in a complex space of dimension $d$ is at most $d^{2}$. A set of $d^{2}$ equiangular lines in a $d$-dimensional complex space is of significant importance in Quantum Computing as it corresponds to a measurement for which its statistics determine completely the quantum state on which the measurement is carried out. The existence of $d^{2}$ equiangular lines in a $d$-dimensional complex space is only known for a few values of $d$, although physicists conjecture that they do exist for any value of $d$. The main results in this thesis are: \begin{enumerate} \item Abelian covers of complete graphs that have certain parameters can be used to construct sets of $d^2$ equiangular lines in $d$-dimen\-sion\-al space; \item we exhibit infinitely many parameter sets that satisfy all the known necessary conditions for the existence of such a cover; and \item we find the decompose of the space into irreducible modules over the Terwilliger algebra of covers of complete graphs. \end{enumerate} A few techniques are known for constructing covers of complete graphs, none of which can be used to construct covers that lead to sets of $d^{2}$ equiangular lines in $d$-dimensional complex spaces. The third main result is developed in the hope of assisting such construction.

Page generated in 0.0527 seconds