• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards effective analysis of big graphs : from scalability to quality

Tian, Chao January 2017 (has links)
This thesis investigates the central issues underlying graph analysis, namely, scalability and quality. We first study the incremental problems for graph queries, which aim to compute the changes to the old query answer, in response to the updates to the input graph. The incremental problem is called bounded if its cost is decided by the sizes of the query and the changes only. No matter how desirable, however, our first results are negative: for common graph queries such as graph traversal, connectivity, keyword search and pattern matching, their incremental problems are unbounded. In light of the negative results, we propose two new characterizations for the effectiveness of incremental computation, and show that the incremental computations above can still be effectively conducted, by either reducing the computations on big graphs to small data, or incrementalizing batch algorithms by minimizing unnecessary recomputation. We next study the problems with regards to improving the quality of the graphs. To uniquely identify entities represented by vertices in a graph, we propose a class of keys that are recursively defined in terms of graph patterns, and are interpreted with subgraph isomorphism. As an application, we study the entity matching problem, which is to find all pairs of entities in a graph that are identified by a given set of keys. Although the problem is proved to be intractable, and cannot be parallelized in logarithmic rounds, we provide two parallel scalable algorithms for it. In addition, to catch numeric inconsistencies in real-life graphs, we extend graph functional dependencies with linear arithmetic expressions and comparison predicates, referred to as NGDs. Indeed, NGDs strike a balance between expressivity and complexity, since if we allow non-linear arithmetic expressions, even of degree at most 2, the satisfiability and implication problems become undecidable. A localizable incremental algorithm is developed to detect errors using NGDs, where the cost is determined by small neighbors of nodes in the updates instead of the entire graph. Finally, a rule-based method to clean graphs is proposed. We extend graph entity dependencies (GEDs) as data quality rules. Given a graph, a set of GEDs and a block of ground truth, we fix violations of GEDs in the graph by combining data repairing and object identification. The method finds certain fixes to errors detected by GEDs, i.e., as long as the GEDs and the ground truth are correct, the fixes are assured correct as their logical consequences. Several fundamental results underlying the method are established, and an algorithm is developed to implement the method. We also parallelize the method and guarantee to reduce its running time with the increase of processors.
2

Big Graph Processing : Partitioning and Aggregated Querying / Traitement des graphes massifs : partitionnement et requêtage agrégatif

Echbarthi, Ghizlane 23 October 2017 (has links)
Avec l'avènement du « big data », de nombreuses répercussions ont eu lieu dans tous les domaines de la technologie de l'information, préconisant des solutions innovantes remportant le meilleur compromis entre coûts et précision. En théorie des graphes, où les graphes constituent un support de modélisation puissant qui permet de formaliser des problèmes allant des plus simples aux plus complexes, la recherche pour des problèmes NP-complet ou NP-difficils se tourne plutôt vers des solutions approchées, mettant ainsi en avant les algorithmes d'approximations et les heuristiques alors que les solutions exactes deviennent extrêmement coûteuses et impossible d'utilisation.Nous abordons dans cette thèse deux problématiques principales: dans un premier temps, le problème du partitionnement des graphes est abordé d'une perspective « big data », où les graphes massifs sont partitionnés en streaming. Nous étudions et proposons plusieurs modèles de partitionnement en streaming et nous évaluons leurs performances autant sur le plan théorique qu'empirique. Dans un second temps, nous nous intéressons au requêtage des graphes distribués/partitionnés. Dans ce cadre, nous étudions la problématique de la « recherche agrégative dans les graphes » qui a pour but de répondre à des requêtes interrogeant plusieurs fragments de graphes et qui se charge de la reconstruction de la réponse finale tel que l'on obtient un « matching approché » avec la requête initiale / With the advent of the "big data", many repercussions have taken place in all fields of information technology, advocating innovative solutions with the best compromise between cost and accuracy. In graph theory, where graphs provide a powerful modeling support for formalizing problems ranging from the simplest to the most complex, the search for NP-complete or NP-difficult problems is rather directed towards approximate solutions, thus Forward approximation algorithms and heuristics while exact solutions become extremely expensive and impossible to use. In this thesis we discuss two main problems: first, the problem of partitioning graphs is approached from a perspective big data, where massive graphs are partitioned in streaming. We study and propose several models of streaming partitioning and we evaluate their performances both theoretically and empirically. In a second step, we are interested in querying distributed / partitioned graphs. In this context, we study the problem of aggregative search in graphs, which aims to answer queries that interrogate several fragments of graphs and which is responsible for reconstructing the final response such that a Matching approached with the initial query

Page generated in 0.0706 seconds