• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regular graphs and convex polyhedra with prescribed numbers of orbits.

Bougard, Nicolas 15 June 2007 (has links)
Etant donné trois entiers k, s et a, nous prouvons dans le premier chapitre qu'il existe un graphe k-régulier fini (resp. un graphe k-régulier connexe fini) dont le groupe d'automorphismes a exactement s orbites sur l'ensemble des sommets et a orbites sur l'ensemble des arêtes si et seulement si (s,a)=(1,0) si k=0, (s,a)=(1,1) si k=1, s=a>0 si k=2, 0< s <= 2a <= 2ks si k>2. (resp. (s,a)=(1,0) si k=0, (s,a)=(1,1) si k=1 ou 2, s-1<=a<=(k-1)s+1 et s,a>0 si k>2.) Nous étudions les polyèdres convexes de R³ dans le second chapitre. Pour tout polyèdre convexe P, nous notons Isom(P) l'ensemble des isométries de R³ laissant P invariant. Si G est un sous-groupe de Isom(P), le f_G-vecteur de P est le triple d'entiers (s,a,f) tel que G ait exactement s orbites sur l'ensemble sommets de P, a orbites sur l'ensemble des arêtes de P et f orbites sur l'ensemble des faces de P. Remarquons que (s,a,f) est le f_{id}-vecteur (appelé f-vecteur dans la littérature) d'un polyèdre si ce dernier possède exactement s sommets, a arêtes et f faces. Nous généralisons un théorème de Steinitz décrivant tous les f-vecteurs possibles. Pour tout groupe fini G d'isométries de R³, nous déterminons l'ensemble des triples (s,a,f) pour lesquels il existe un polyèdre convexe ayant (s,a,f) comme f_G-vecteur. Ces résultats nous permettent de caractériser les triples (s,a,f) pour lesquels il existe un polyèdre convexe tel que Isom(P) a s orbites sur l'ensemble des sommets, a orbites sur l'ensemble des arêtes et f orbites sur l'ensemble des faces. La structure d'incidence I(P) associée à un polyèdre P consiste en la donnée de l'ensemble des sommets de P, l'ensemble des arêtes de P, l'ensemble des faces de P et de l'inclusion entre ces différents éléments (la notion de distance ne se trouve pas dans I(P)). Nous déterminons également l'ensemble des triples d'entiers (s,a,f) pour lesquels il existe une structure d'incidence I(P) associée à un polyèdre P dont le groupe d'automorphismes a exactement s orbites de sommets, a orbites d'arêtes et f orbites de sommets.
2

Regular graphs and convex polyhedra with prescribed numbers of orbits

Bougard, Nicolas 15 June 2007 (has links)
Etant donné trois entiers k, s et a, nous prouvons dans le premier chapitre qu'il existe un graphe k-régulier fini (resp. un graphe k-régulier connexe fini) dont le groupe d'automorphismes a exactement s orbites sur l'ensemble des sommets et a orbites sur l'ensemble des arêtes si et seulement si<p><p>(s,a)=(1,0) si k=0,<p>(s,a)=(1,1) si k=1,<p>s=a>0 si k=2,<p>0< s <= 2a <= 2ks si k>2.<p><p>(resp.<p>(s,a)=(1,0) si k=0,<p>(s,a)=(1,1) si k=1 ou 2,<p>s-1<=a<=(k-1)s+1 et s,a>0 si k>2.)<p><p>Nous étudions les polyèdres convexes de R³ dans le second chapitre. Pour tout polyèdre convexe P, nous notons Isom(P) l'ensemble des isométries de R³ laissant P invariant. Si G est un sous-groupe de Isom(P), le f_G-vecteur de P est le triple d'entiers (s,a,f) tel que G ait exactement s orbites sur l'ensemble sommets de P, a orbites sur l'ensemble des arêtes de P et f orbites sur l'ensemble des faces de P. Remarquons que (s,a,f) est le f_{id}-vecteur (appelé f-vecteur dans la littérature) d'un polyèdre si ce dernier possède exactement s sommets, a arêtes et f faces. Nous généralisons un théorème de Steinitz décrivant tous les f-vecteurs possibles. Pour tout groupe fini G d'isométries de R³, nous déterminons l'ensemble des triples (s,a,f) pour lesquels il existe un polyèdre convexe ayant (s,a,f) comme f_G-vecteur. Ces résultats nous permettent de caractériser les triples (s,a,f) pour lesquels il existe un polyèdre convexe tel que Isom(P) a s orbites sur l'ensemble des sommets, a orbites sur l'ensemble des arêtes et f orbites sur l'ensemble des faces.<p><p>La structure d'incidence I(P) associée à un polyèdre P consiste en la donnée de l'ensemble des sommets de P, l'ensemble des arêtes de P, l'ensemble des faces de P et de l'inclusion entre ces différents éléments (la notion de distance ne se trouve pas dans I(P)). Nous déterminons également l'ensemble des triples d'entiers (s,a,f) pour lesquels il existe une structure d'incidence I(P) associée à un polyèdre P dont le groupe d'automorphismes a exactement s orbites de sommets, a orbites d'arêtes et f orbites de sommets. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
3

The b-chromatic number of regular graphs / Le nombre b-chromatique de graphe régulier

Mortada, Maidoun 27 July 2013 (has links)
Les deux problèmes majeurs considérés dans cette thèse : le b-coloration problème et le graphe emballage problème. 1. Le b-coloration problème : Une coloration des sommets de G s'appelle une b-coloration si chaque classe de couleur contient au moins un sommet qui a un voisin dans toutes les autres classes de couleur. Le nombre b-chromatique b(G) de G est le plus grand entier k pour lequel G a une b-coloration avec k couleurs. EL Sahili et Kouider demandent s'il est vrai que chaque graphe d-régulier G avec le périmètre au moins 5 satisfait b(G) = d + 1. Blidia, Maffray et Zemir ont montré que la conjecture d'El Sahili et de Kouider est vraie pour d ≤ 6. En outre, la question a été résolue pour les graphes d-réguliers dans des conditions supplémentaires. Nous étudions la conjecture d'El Sahili et de Kouider en déterminant quand elle est possible et dans quelles conditions supplémentaires elle est vrai. Nous montrons que b(G) = d + 1 si G est un graphe d-régulier qui ne contient pas un cycle d'ordre 4 ni d'ordre 6. En outre, nous fournissons des conditions sur les sommets d'un graphe d-régulier G sans le cycle d'ordre 4 de sorte que b(G) = d + 1. Cabello et Jakovac ont prouvé si v(G) ≥ 2d3 - d2 + d, puis b(G) = d + 1, où G est un graphe d-régulier. Nous améliorons ce résultat en montrant que si v(G) ≥ 2d3 - 2d2 + 2d alors b(G) = d + 1 pour un graphe d-régulier G. 2. Emballage de graphe problème : Soit G un graphe d'ordre n. Considérer une permutation σ : V (G) → V (Kn), la fonction σ* : E(G) → E(Kn) telle que σ *(xy) = σ *(x) σ *(y) est la fonction induite par σ. Nous disons qu'il y a un emballage de k copies de G (dans le graphe complet Kn) s'il existe k permutations σi : V (G) → V (Kn), où i = 1, …, k, telles que σi*(E(G)) ∩ σj (E(G)) = ɸ pour i ≠ j. Un emballage de k copies d'un graphe G est appelé un k-placement de G. La puissance k d'un graphe G, noté par Gk, est un graphe avec le même ensemble de sommets que G et une arête entre deux sommets si et seulement si le distance entre ces deux sommets est au plus k. Kheddouci et al. ont prouvé que pour un arbre non-étoile T, il existe un 2-placement σ sur V (T). Nous introduisons pour la première fois le problème emballage marqué de graphe dans son graphe puissance / Two problems are considered in this thesis: the b-coloring problem and the graph packing problem. 1. The b-Coloring Problem : A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least a vertex in each other color class. The b-chromatic number of a graph G, denoted by b(G), is the maximum number t such that G admits a b-coloring with t colors. El Sahili and Kouider asked whether it is true that every d-regular graph G with girth at least 5 satisfies b(G) = d + 1. Blidia, Maffray and Zemir proved that the conjecture is true for d ≤ 6. Also, the question was solved for d-regular graphs with supplementary conditions. We study El Sahili and Kouider conjecture by determining when it is possible and under what supplementary conditions it is true. We prove that b(G) = d+1 if G is a d-regular graph containing neither a cycle of order 4 nor of order 6. Then, we provide specific conditions on the vertices of a d-regular graph G with no cycle of order 4 so that b(G) = d + 1. Cabello and Jakovac proved that if v(G) ≥ 2d3 - d2 + d, then b(G) = d + 1, where G is a d-regular graph. We improve this bound by proving that if v(G) ≥ 2d3 - 2d2 + 2d, then b(G) = d+1 for a d-regular graph G. 2. Graph Packing Problem : Graph packing problem is a classical problem in graph theory and has been extensively studied since the early 70's. Consider a permutation σ : V (G) → V (Kn), the function σ* : E(G) → E(Kn) such that σ *(xy) = σ *(x) σ *(y) is the function induced by σ. We say that there is a packing of k copies of G into the complete graph Kn if there exist k permutations σ i : V (G) → V (Kn), where i = 1,…, k, such that σ*i (E(G)) ∩ σ*j (E(G)) = ɸ for I ≠ j. A packing of k copies of a graph G will be called a k-placement of G. The kth power Gk of a graph G is the supergraph of G formed by adding an edge between all pairs of vertices of G with distance at most k. Kheddouci et al. proved that for any non-star tree T there exists a 2-placement σ on V (T). We introduce a new variant of graph packing problem, called the labeled packing of a graph into its power graph
4

Partitionnement, recouvrement et colorabilité dans les graphes / Partitionability, coverability and colorability in graphs

Gastineau, Nicolas 08 July 2014 (has links)
Nos recherches traitent de coloration de graphes avec des contraintes de distance (coloration de packing) ou des contraintes sur le voisinage (coloration de Grundy). Soit S={si| i in N*} une série croissante d’entiers. Une S -coloration de packing est une coloration propre de sommets telle que tout ensemble coloré i est un si-packing (un ensemble où tous les sommets sont à distance mutuelle supérieure à si). Un graphe G est (s1,... ,sk)-colorable si il existe une S -coloration de packing de G avec les couleurs 1, ...,,k. Une coloration de Grundy est une coloration propre de sommets telle que pour tout sommet u coloré i, u est adjacent à un sommet coloré j, pour chaque j<i.Dans cette exposé, nous présentons des résultats connus à propos de la S-coloration de packing. Nous apportons de nouveaux résultats à propos de la S-coloration de packing, pour des classes de graphes telles que les chemins, les cycles et les arbres. Nous étudions en détail la complexité du problème de complexité associé à la S-coloration de packing, noté S -COL. Pour certaines instances de S -COL, nous caractérisons des dichotomies entre problèmes NP-complets et problèmes résolubles en tempspolynomial. Nous nous intéressons aux différentes grilles infinies, les grilles hexagonale, carrée, triangulaire et du roi et nous déterminons des propriétés de subdivisions d’un i-packing en plusieurs j-packings, avec j>i. Ces résultats nous permettent de déterminer des S-colorations de packings de ces grilles pour plusieurs séries d’entiers. Nous examinons une classe de graphe jamais étudiée en ce qui concerne la S -coloration de packing: les graphes subcubiques. Nous déterminons que tous les graphes subcubiques sont (1,2,2,2,2,2,2)-colorables et (1,1,2,2,3)-colorables. Un certain nombre de résultats sont prouvés pour certaines sous-classes des graphes subcubiques. Pour finir, nous nous intéressons au nombre de Grundy des graphes réguliers. Nous déterminons une caractérisation des graphes cubiques avec un nombre de Grundy de 4. De plus, nous prouvons que tous les graphes r-réguliers sans carré induit ont pour nombre de Grundy de r+1, pour r<5. / Our research are about graph coloring with distance constraints (packing coloring) or neighborhood constraints (Grundy coloring). Let S={si| i in N*} be a non decreasing sequence of integers. An S-packing coloring is a proper coloring such that every set of color i is an si-packing (a set of vertices at pairwise distance greater than si). A graph G is (s1,... ,sk)-colorable if there exists a packing coloring of G with colors 1,... ,k. A Grundy coloring is a proper vertex coloring such that for every vertex of color i, u is adjacent to a vertex of color j, for each j<i.In this presentation, we present results about S-packing coloring. We prove new results about the S-coloring of graphs including paths, cycles and trees. We study the complexity problem associated to the S-packing coloring, this problem is denoted S-COL. For some instances of S-COL, we characterize dichotomy between NP-complete problems and problems solved by a polynomial time algorithm. We study also different lattices, the hexagonal, square, triangular and king lattices. We determine properties on the subdivision of an i-packing in several j-packings, for j>i. These results allow us to determine S-packing coloring of these lattices for several sequences of integers. We examine a class of graph that has never been studied for S-packing coloring: the subcubic graphs. We determine that every subcubic graph is (1,2,2,2,2,2,2)-colorable and (1,1,2,2,3)-colorable. Few results are proven about some subclasses. Finally, we study the Grundy number of regular graphs. We determine a characterization of the cubic graphs with Grundy number 4. Moreover, we prove that every r-regular graph without induced square has Grundy number r+1, for r<5.

Page generated in 0.0581 seconds