• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Direct Fabrication of Planar Grating by Ultrafast Laser Beam

Venkatakrishnan, K., Hee, C.W., Sivakumar, N.R., Ngoi, Kok Ann Bryan 01 1900 (has links)
Femtosecond laser pulse has been used for the machining of the gratings primarily due to its superior advantages over conventional continuous wave (CW) and long pulse lasers for micromachining. In this paper, we develop a novel technique for the fabrication of planar gratings by colliding two beams to generate interference fringes. This technique is simple, fast and low cost. We have successfully fabricated planar gratings on a copper substrate. / Singapore-MIT Alliance (SMA)
2

Fabrication and testing of off-plane gratings for future X-ray spectroscopy missions

DeRoo, Casey T 01 August 2016 (has links)
Soft X-ray spectroscopy is a useful observational tool, offering information about high-temperature (10⁶ -- 10⁷ K) astrophysical plasmas and providing useful characterizations of a number of energetic systems, including accreting young stars, cosmic filaments between galaxies, and supermassive black holes. In order to yield high resolution spectra with good signal-to-noise, however, soft X-ray spectrometers must realize improvements in resolving power and effective area through the development of high performance gratings. Off-plane reflection gratings offer the capability to work at high dispersions with excellent throughput, and are a viable candidate technology for future X-ray spectroscopy missions. The off-plane geometry requires a customizable grating meeting distinct fabrication requirements, and a process for producing gratings meeting these requirements has been developed. These fabricated gratings have been evaluated for performance in terms of resolution and diffraction efficiency. Furthermore, these gratings have been conceptually implemented in a soft X-ray spectrometer, the Off-Plane Grating Rocket Experiment (OGRE), whose optical design provides a template for future missions to achieve high performance within a small payload envelope.
3

Scattering of guided waves in thick gratings at extreme angles

Kurth, Martin Lyndon January 2006 (has links)
The aim of this project was to develop a passive optical compensating arrangement that would allow the formation and continued stability of interference patterns over a long timescale and also to investigate optical wave scattering in thick gratings at extreme angles of scattering. A novel passive arrangement based on a Sagnac interferometer is described that produces interference patterns more stable than those produced by a conventional arrangement. An analysis of the arrangement is presented that shows it to be an order of magnitude more stable than an equivalent conventional approach. The excellent fringe stability allowed holographic gratings with small periods (~ 0.5 μm) to be written in photorefractive lithium niobate with low intensity writing fields (~mW/cm2) produced by a He:Ne laser, despite long grating fabrication times (~ 1000 s). This was possible because the optical arrangement compensated for phase shifts introduced by translational and rotational mirror motion caused by environmental perturbations. It was shown that the rapid introduction of a phase shift in one of the writing fields can change the direction of energy flow in the two-wave mixing process. It was found that the improvement in stability of the modified Sagnac arrangement over a conventional interferometer decreased when the crossing angle was increased and that the point about which the mirrors are rotated greatly affects the stability of the arrangement. For a crossing angle of 12 degrees, the modified Sagnac arrangement is more than twice as stable when the mirrors are rotated about their midpoints, rather than their endpoints. Investigations into scattering in the extremely asymmetrical scattering (EAS) geometry were undertaken by scattering light from a 532nm Nd:YAG laser off gratings written in photorefractive barium titanate and lithium niobate. Despite the difficulties posed by background noise, there was very good agreement between the observed scattered field and that predicted by a previously established theoretical model. Thus, this work represents the first experimental observation of EAS in the optical part of the spectrum.

Page generated in 0.1337 seconds