Spelling suggestions: "subject:"gravitationalwaves"" "subject:"gravitationalwave""
91 |
"Estudo de casadores de impedância mecânicos para transdutores paramétricos de microondas em detectores esféricos de ondas gravitacionais" / Study of mechanical impedance matchers for microwave, parametric trasducers in spherical gravitational wave detectorFabio da Silva Bortoli 20 September 2006 (has links)
Através de várias simulações em um programa de elementos finitos fez-se uma série de estudos de uma esfera conectada a casadores de impedância mecânicos com dois formatos diferentes: "bico de passsarinho", criado nesta pesquisa, e "cogumelo". Por limitação de tempo de processamento computacional escolheu-se trabalhar com casadores de impedância mecânicos com formatos mais simples que os utilizados no detector Mário Schenberg. Constatou-se que os modos normais do sistema acoplado não são exatamente degenerados. Fica clara a dificuldade em se encontrar um grupo de casador de impedância mecânico que possa ser calibrado da mesma forma em todos os diferentes modos de detecção. Para o casador de impedância com formato de cogumelo foi identificado um conjunto de dimensões que permite que todos os transdutores sejam calibrados da mesma forma / Using simulation in Finite Element Modeling software a series of studies of a sphere connected to mechanical impedance mantchers with two different shapes: beak shape na mushroom shape. For computer processing limitation time, the work was done with simpler shapes than the one used in Mário schenberg Detector. It was shown that the system vibration normal modes are not exactly degenerated. Its clear the dificcult in finding a set of mehanical macthers that can be calibrated in the same way in all the different detector modes
|
92 |
Predicting Electromagnetic Signatures of Gravitational Wave SourcesD'Orazio, Daniel John January 2016 (has links)
This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to to gamma-rays.
|
93 |
De l'étalonnage d'Advanced Virgo à la recherche d'ondes gravitationnelles émises par des coalescences de binaires compactes / From the calibration of Advanced Virgo to the search for gravitational waves emitted by compact binary coalescencesGermain, Vincent 03 October 2017 (has links)
L'ère de l'astronomie gravitationnelle a commencé avec la première détection d'une onde gravitationnelle le 14 septembre 2015, par la collaboration LIGO-Virgo. Les premières détections proviennent de coalescences de trous noirs de quelques dizaines de masses solaires. Le détecteur européen Advanced Virgo a redémarré en 2017 pour participer aux prochaines détections d'ondes gravitationnelles et localiser les sources astrophysiques.Cette thèse a pour sujet les différentes étapes du processus de détection des ondes gravitationnelles : de l'étalonnage du détecteur Advanced Virgo à l'analyse en temps réel des données du réseau d'interféromètres LIGO-Virgo. Dans un premier temps, les objectifs, la méthode et les résultats de l'étalonnage du détecteur Advanced Virgo sont décrits. Cette étape est cruciale pour comprendre la sensibilité du détecteur et pour reconstruire l'amplitude de l'onde gravitationnelle. Un nouvel algorithme, SilenteC, développé pendant la thèse est ensuite détaillé : son objectif est d'identifier les sources de bruits non-stationnaires qui limitent la sensibilité des analyses. Certains bruits transitoires interviennent de façon non-linéaire et SilenteC tente de repérer ce type de contribution. Enfin, l'analyse MBTA à faible latence pour la recherche des signaux d'ondes gravitationnelles issus de coalescences de binaires compactes est décrite. En particulier, l'accent est mis sur la caractérisation de vétos permettant de distinguer les signaux astrophysiques à sélectionner et les bruits transitoires à rejeter le plus efficacement possible. / The era of gravitational astronomy began with the first detection of a gravitational wave on September 14, 2015, by the LIGO-Virgo collaboration. The first detections come from coalescences of black holes with masses of a few tens of solar masses. The European detector Advanced Virgo restarted in 2017 to participate in the next detections of gravitational waves and to locate the astrophysical sources.This thesis deals with the different stages of the gravitational waves detection process: from the calibration of the Advanced Virgo detector to low-latency analysis of the LIGO-Virgo interferometer network data. First, the objectives, method and results of the detector calibration are described. This step is crucial for understanding the sensitivity of the detector and for reconstructing the amplitude of the gravitational wave. A new algorithm, SilenteC, developed during the thesis is then detailed: its objective is to identify the sources of non-stationary noises that limit the sensitivity of the analysis. Some transient noises are non-linear and SilenteC tries to identify this type of contribution. Finally, low-latency MBTA analysis for the detection of gravitational wave signals from compact binary coalescences is described. In particular, emphasis is put on the study of vetos making it possible to distinguish the astrophysical signals to be selected and the transient noises to be rejected as efficiently as possible.
|
94 |
Gravitational waves from extreme-mass-ratio inspiralsCole, Robert Harry January 2015 (has links)
No description available.
|
95 |
Design and Testing of Composite Mirror Adaptive OpticsChaderjian, Aria 01 January 2019 (has links)
Adaptive optics work to reduce optical losses in the LIGO detectors, making them more sensitive to gravitational wave events. Mode-mismatch between the coupled optical cavities, caused by uncertainty in the radii of curvature and orientation of the interferometer optics, is one of the main sources of loss in Advanced LIGO. Thermal actuators are used to dynamically change the radius of curvature of certain interferometer optics, allowing mode mismatches to be reduced. Finely tunable astigmatic mirrors have the potential to be very useful in gravitational wave detectors for beam reflections at non-normal incidence, but have never been tested. These astigmatic composite mirrors are constructed by bonding a fused silica mirror to a non-axially-symmetric metal plate. When heated, the mirror is differentially distorted in the x- and y-directions due to its asymmetric design, resulting in an elliptical reflected beam profile. We model and test an initial mirror design, finding that it does, in fact, act as an astigmatic mirror. This finding opens a new avenue towards development of adaptive optics for current and next-generation gravitational wave detectors.
|
96 |
Direct Measurement of the Spectral Distribution of Thermal NoiseSlagmolen, Bram Johannes Jozef, BRAM.SLAGMOLEN@ANU.EDU.AU January 2005 (has links)
This thesis investigates the direct measurement of the thermal noise spectral distribution.
Long base line gravitational wave detectors, being commissioned around
the world, are limited in sensitivity in the intermediate frequencies by the thermal
noise. These detectors are utilising suspended test mirrors for the detection of gravitational
waves by measuring their relative displacement. One of the fundamental
noise sources in these detectors is the thermally induced displacement of the suspension
onto and within the mirrors. This thermally induced motion of the test mirrors
limits the displacement sensitivity of the gravitational wave detectors. Knowledge
of the spectral behavior of thermal noise over a wide frequency range will improve
predictions and understanding of the behavior of the suspension and test mirrors.¶
In this thesis the direct measurement of the thermal noise spectral distribution
of a mechanical flexure resonator is described. The mechanical flexure resonator is
an unidirectional ’wobbly table’ made from copper-beryllium, which hinges around
four thin flexures 15 mm wide, 1 mm high and ~116 µm thick. The mechanical
flexure resonator has a resonant frequency of 192 Hz, with a quality factor of ~3000.¶
The thermal noise induced displacement of the mechanical flexure resonator was
measured using an optical cavity. The end mirror of a two mirror optical cavity was
mounted on the mechanical flexure resonator. A laser was made resonant with the
test cavity by use of a locking control system. Thermal noise induced displacement
moved the test cavity away from resonance. By measuring the error-signal in the
control system, the equivalent thermal noise displacement was obtained.¶
The thermal noise induced displacement of the mechanical flexure resonator was
predicted to be in the order of 10^(−12) to 10^(−17) m/sqrtHz over a frequency range of
10 Hz to 10 kHz. All other external noise sources needed to be suppressed to below
this level. A major noise source was the laser frequency fluctuations. When the
test cavity was locked to the laser, the laser frequency fluctuations dominated the
read out signal. To suppress the frequency fluctuations, the laser was locked to a
rigid long optical reference cavity. This allowed the frequency fluctuations to be
suppressed to below the equivalent thermal noise displacement of the test cavity
over the frequency range of interest.¶
Acoustic noise was suppressed by placing the whole experiment inside a vacuum
chamber, and evacuating the air inside the chamber down to a pressure level of
10^(−4) mbar. A seismic vibration isolation system was used to suppress the seismic
noise in the laboratory to below 10^(−14) m/sqrtHz at frequencies above 4 Hz.¶
With the experimental set up, the thermal noise displacement of the mechanical
flexure resonator has been measured. Due to the degradation of the isolator performance,
measurement of the thermal noise behavior over a wide frequency range of
the mechanical flexure resonator was unsuccessful. By using an analytical curve fitting
routine around the fundamental and first order resonant modes of the resonator,
a loss factor of (3.5 ± 1.5 − 3.7 ± 1.5) × 10^(−4) for the copper-beryllium mechanical
flexure resonator was obtained and structural damping was inferred.
|
97 |
Stellar iron core collapse in {3+1} general relativity and the gravitational wave signature of core-collapse supernovaeOtt, Christian David January 2006 (has links)
I perform and analyse the first ever calculations of rotating stellar iron core collapse in {3+1} general relativity that start out with presupernova models from stellar evolutionary calculations and include a microphysical finite-temperature nuclear equation of state, an approximate scheme for electron capture during collapse and neutrino pressure effects. Based on the results of these calculations, I obtain the to-date most realistic estimates for the gravitational wave signal from collapse, bounce and the early postbounce phase of core collapse supernovae.
I supplement my {3+1} GR hydrodynamic simulations with 2D Newtonian neutrino radiation-hydrodynamic supernova calculations focussing on (1) the late postbounce gravitational wave emission owing to convective overturn, anisotropic neutrino emission and protoneutron star pulsations, and (2) on the gravitational wave signature of accretion-induced collapse of white dwarfs to neutron stars. / Ich präsentiere die ersten Computer-Simulationen des rotierenden Kollapses stellarer Eisenkerne, die in der {3+1}-Zerlegung der Allgemeinen Relativitätstheorie durchgeführt werden und Vorsupernova-Sternmodelle aus Sternentwicklungsrechnungen, eine heiße nukleare Zustandsgleichung und ein näherungsweises Verfahren zur Beschreibung des Elektroneneinfangs enthalten und
Neutrinodruck-Effekte berücksichtigen. Basierend auf den Ergebnissen dieser Rechnungen erhalte ich die zur Zeit realistischsten Vorhersagen für das
Gravitationswellensignal der Kollaps, Abprall, Abkling und frühen Nach-Abprallphase einer Kern-Kollaps-Supernova.
Neben den {3+1} Simulationen diskutiere ich newtonsche axisymmetrische Kern-Kollaps-Supernova-Simulationen mit Schwerpunkten auf: (1) der Gravitationswellenabstrahlung in der späten Nach-Abprallphase durch Konvektionsströmungen, anisotropische Neutrinoemission und Proto-Neutronenstern
Pulsationen und (2) der Gravitationswellensignatur des Kollapses weißer Zwergsterne zu Neutronensternen, der durch Akkretion eingeleitet wird.
|
98 |
On gravitational wave modeling: numerical relativity data analysis, the excitation of kerr quasinormal modes, and the unsupervised machine learning of waveform morphologyLondon, Lionel 21 September 2015 (has links)
The expectation that light waves are the only way to gather information about the distant
universe dominated scientific thought, without serious alternative, until Einstein’s 1916
proposal that gravitational waves are generated by the dynamics of massive objects. Now,
after nearly a century of speculation, theoretical development, observational support, and
finally, tremendous experimental preparation, there are good reasons to believe that we will
soon directly detect gravitational waves. One of the most important of these good reasons
is the fact that matched filtering enables us to dig gravitational wave signals out of noisy
data, if we have prior information about the signal’s morphology. Thus, at the interface of
Numerical Relativity simulation, and data analysis for experiment, there is a central effort
to model likely gravitational wave signals. In this context, I present my contributions to
the modeling of Gravitational Ringdown (Kerr Quasinormal Modes). Specifically by ap-
propriately interfacing black hole perturbation theory with Numerical Relativity, I present
the first robust models for Quasinormal Mode excitation. I present the first systematic de-
scription of Quasinormal Mode overtones in simulated binary black hole mergers. I present
the first systematic description of nonlinear Quasinormal Mode excitation in simulated bi-
nary black hole mergers. Lastly, it is suggested that by analyzing the phase of black hole
Quasinormal Modes, we may learn information about the black hole’s motion with respect
to the line of sight. Moreover, I present ongoing work at the intersection of gravitational
wave modeling and machine learning. This work shows promise for the automated and near
optimal placement of Numerical Relativity simulations concurrent with the near optimal
linear modeling of gravitational output.
|
99 |
The Dynamics and Evolution of Supermassive Black Holes in Merging GalaxiesBlecha, Laura Elizabeth 03 August 2012 (has links)
This thesis is a theoretical study of supermassive black holes (SMBHs) in merging galaxies. We consider the dynamics that govern inspiralling SMBH pairs and gravitational-wave (GW) recoiling SMBHs, as well as the fueling of active galactic nuclei (AGN) during galaxy mergers. In particular, we focus on the observable signatures that could distinguish dual or recoiling AGN from those in isolated galaxies, and we explore the implications of these events for the coordinated evolution of SMBHs and galaxies. In the second and third chapters, semi-analytical models for GW-recoiling SMBHs are developed. The second chapter illustrates that bound recoiling SMBHs may have long wandering timescales and that recoil events can self-regulate SMBH growth. In the third chapter, we study the evolution of recoiling SMBHs in evolving, gaseous merger remnants. We find that the presence of gas greatly influences recoiling SMBH trajectories and may partially suppress even large recoil kicks in some cases. We also show that kinematically- and spatially-offset AGN can have substantial lifetimes for a wide range in kick speeds. Finally, this chapter illustrates that GW recoil influences the observed SMBH-galaxy relations as well as central star formation in the merger remnant. In the fourth chapter we turn our attention to inspiralling SMBH pairs with kiloparsec-scale separations. We use a novel approach to model the narrow-line emission from these SMBH pairs, in order to understand their relationship to observations of double-peaked narrow-line AGN. Our results indicate that double-peaked narrow-line AGN often arise from gas kinematics rather than from dual SMBH motion, but that the latter are a generic, short-lived phase of SMBH inspiral in gaseous mergers. We identify several diagnostics that could aid in distinguishing the true AGN pairs in the double-peaked sample. Finally, the fifth chapter examines a particular galaxy that exhibits signatures of both a recoiling AGN and an AGN pair. Applying methods developed throughout this thesis, we design models for both scenarios that are well-matched to the available data. Currently, neither possibility can be excluded for this object, but our models constrain the most relevant parameters for etermining its nature and for the design of future observations. / Astronomy
|
100 |
Tidal Disruption of Stars by Supermassive Black HolesStone, Nicholas Chamberlain 07 June 2014 (has links)
This thesis presents theoretical results on the tidal disruption of stars by supermassive black holes (SMBHs). The multiwavelength ares produced by tidal disruption events (TDEs) have supernova-like luminosities, and associated relativistic jets can be visible to cosmological distances. TDEs probe the demography of quiescent SMBHs, and are natural laboratories for jet launching mechanisms and super-Eddington accretion. The first chapter broadly surveys TDE physics. The second and third chapters estimate the TDE rate following gravitational wave (GW) recoil of a SMBH (after a SMBH binary merger). Immediately after GW recoil, the TDE rate increases, sometimes to \(~10^{-1}\) TDEs per year. This "burst" of TDE flares can provide an electromagnetic counterpart to low frequency GW signals, localizing sources and measuring cosmological parameters. Millions of years later, recoiled SMBHs wandering through their host galaxies will produce spatially offset TDEs at a rate which is likely detectable with the LSST. In the fourth chapter, we show that standard estimates for \(\Delta\epsilon\), the energy spread of TDE debris, are wrong, sometimes by orders of magnitude. Correcting this error reduces the observability of many TDEs. We introduce a new analytic model for tidal disruption, calculate \(\Delta\epsilon\)'s dependence on stellar spin, estimate general relativistic corrections to \(\Delta\epsilon\), and quantify the GW signal generated from tidal compression. The fifth chapter presents hydrodynamical simulations of TDE debris circularization, focusing on eccentric, rather than parabolic, orbits. General relativistic precession drives debris circularization, in contrast to past simulations using smaller black holes. In the sixth chapter, we show that TDE light curves can constrain or measure SMBH spins, as Lense-Thirring torques produce quasiperiodic variability in disk emission. Precession of a relativistic jet could also measure SMBH spin, and we apply our model to the relativistic Swift 1644+57 TDE. The seventh chapter considers the disruption of neutron stars (NSs) by stellar mass black holes (BHs) or other NSs. Jet precession in associated short-hard gamma ray bursts is uniquely possible for NS-BH (not NS-NS) mergers. We quantify typical precession amplitudes and periods, and calculate their time evolution. If disk viscosities are relatively low, electromagnetic observations alone could distinguish NS-BH from NS-NS mergers. / Astronomy
|
Page generated in 0.0888 seconds