• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 996
  • 206
  • 106
  • 100
  • 70
  • 26
  • 15
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 8
  • Tagged with
  • 1892
  • 313
  • 218
  • 190
  • 187
  • 181
  • 178
  • 117
  • 113
  • 113
  • 82
  • 76
  • 76
  • 76
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Optical studies of the mesospheric region

Woithe, Jonathan Mark January 2000 (has links)
A three-field photometer has been employed at the University of Adelaide's Buckland Park field site to collect optical observations of the 557.7nm OI and 730nm OH airglow emissions. Data have been collected on an almost continuous basis since May 1995 through to May 2000, with observations made whenever the moon was not up. Techniques and analysis procedures have been developed which allow routine extraction of the parameters of gravity waves observed each night. A cross-spectral analysis was performed on processed data from the photometer to identify short period (less than 3 hours) wave activity on nights where the impact of clouds on the data was minimal. The resulting wave parameters are analysed for seasonal variability and used to build up a climatology of wave parameters over the 5 years of observation. No consistent seasonal variation was observed, although there was a strong eastward perference to the wave's propagation direction. Implications of this finding are discussed. A co-located MF radar has been operating in spaced antenna mode providing wind data concurrent with the optical observations for most of the acquisition period. When available the wind data allowed calculation of the intrinsic parameters for waves identified in the optical data. The seasonal variablility of these parameters was investigated. An evaluation of energy and momentum fluxes estimated using the method of Swenson et al (1998b) was carried out. Approximations made in this method were found to be inappropriate for the waves detected by the photometer, and a refined procedure was therefore developed. This gave more realistic results, although large number of physically unreasonable momentum flux measurements were reported. Possible reasons for these were explored, and the need for further investigations emphasised. The five year dataset also allowed investigation of the long-term behaviour of the airglow. Both the intensity and variance were analysed using the Lomb-Scargle method across the complete dataset to identify the dominant periods present. Following similar treatment, the MF spaced antenna winds were compared with the optical results; this utilised a complex spectrum extension to the basic Lomb algorithm. Seasonally related periodicities of two years, one year, one half of a year and one third of a year were observed in the optical data, along with a possible signature of a five and a half year period potentially linked to the eleven year solar cycle. The radar data did not have stong signatures of the one third of a year periodicity although the presence of an five and a half year periodicity could not be ruled out. Gravity wave activity, as measured by the optical intensity variance, reached a maximum during autumn with a secondary maximum occurring in spring. The annual variability of the wave spectrum detected by the photometer was also studied which showed a falloff in the wave energy at short periods (less than thirty minutes) during autumn and spring. This suggested that the enhanced wave activity at these times consisted mainly of waves with periods greater than thirty minutes. / Thesis (Ph.D.)--Department of Physics and Mathematical Physics, 2000.
512

Automatic interpretation of potential field data applied to the study of overburden thickness and deep crustal structures, South Australia

Shi, Zhiqun. January 1993 (has links) (PDF)
Bibliography: leaves 189-203. Deals with two interpretation methods, a computer program system AUTOMAG and spectral analysis, used for studying overburden thickness and density structure of the crust. The methods were applied to the Gawler Craton, Eyre Peninsula.
513

Radar studies of atmospheric gravity waves

Reid, I. M. (Iain Murray) January 1984 (has links) (PDF)
Includes reprint of author's article, `HF Doppler measurements of mesospheric gravity wave momentum fluxes`, from Journal of the atmospheric sciences, vol. 40, no. 5, May 1983 Bibliography: Last 6 unnumbered leaves
514

Mest för syns skull? : en studie av effekten på Sveriges utlandsexport av statsbesök

Arvidsson, Jonas January 2006 (has links)
<p>Detta är en undersökning av Sveriges statsbesöks effekt på Sveriges export. För att mäta effekten använder jag mig av en empirisk modell, den så kallade handelsgravitationsmodellen. Jag finner att det är svårt att hitta starka och statistiskt signifikanta bevis på att Sveriges statsbesök har en positiv effekt på exporten. När man isolerar för statsbesök i Europa utanför Norden finner jag till och med tecken på att de kan ha en negativ effekt. Jag har även jämfört effekten av Sveriges statsbesök med effekten av Storbritanniens och funnit att Sverige har en generellt lägre effekt än Storbritannien, oavsett vilken modell som används.</p>
515

Gravity and structures of the crust and subcrust in the northeast Pacific Ocean west of Washington and British Columbia

Couch, Richard W. 08 May 1969 (has links)
Graduation date: 1969
516

Turbulent and gravity wave transport in the free atmosphere

Kim, Jinwon 29 November 1990 (has links)
Graduation date: 1991
517

Gravity and structures of the crust and subcrust in the northeast Pacific Ocean west of Washington and British Columbia

Couch, Richard W. 08 May 1969 (has links)
Graduation date: 1969
518

Gravity currents in two-layer stratified media

Tan, Alan 06 1900 (has links)
An analytical and experimental study of boundary gravity currents propagating through a two-layer stratified ambient of finite vertical extent is presented. The theoretical discussion considers slumping, supercritical gravity currents, i.e. those that generate an interfacial disturbance whose speed of propagation matches the front speed, U and follows from the classical analysis of Benjamin [J. Fluid Mech. 31, pp. 209-248, 1968]. In contrast to previous investigations, the amplitude of the interfacial disturbance is parameterized so that it can be determined straightforwardly from ambient layer depths. The theoretical model, which is applicable to the special case where the depth, D, of the gravity current fluid at the initial instant spans the channel depth, H, shows good agreement with experimental measurements and also analogue numerical simulations performed in conjunction with the present investigation. Unfortunately, it is difficult to extend our theoretical results to the more general case where D < H. Reasons for this difficulty will be discussed. From experimental and numerical observations, the interface thickness is observed to negligibly affect the speed of supercritical gravity currents even in the limit where the interface spans the channel depth so that the ambient fluid is linearly stratified over the whole of its depth. Conversely, subcritical gravity currents show a mild upward trend of U on the interface thickness. Finally, the effects of densities, ambient depths, interface thickness and D on the horizontal position, X where deceleration first begins are considered. In contrast to the uniform ambient configuration, the gravity current can propagate without decelerating beyond 12 lock lengths and decelerate as early as 1 lock length. / Thermo Fluids
519

Development and Applications of Second-Order Turbulence Closures for Mixing in Overflows

Ilicak, Mehmet 09 May 2009 (has links)
Mixing between overflows and ambient water masses is a crucial problem of deep-water formation in the down-welling branch of the meridional overturning circulation of the ocean. In this dissertation work, performance of second-order turbulence closures in reproducing mixing of overflows is investigated within both hydrostatic and non-hydrostatic models. First, a 2D non-hydrostatic model is developed to simulate the Red Sea overflow in the northern channel. The model results are compared to the Red Sea Outflow Experiment. It is found that the experiments without sub-grid scale models cannot reproduce the basic structure of the overflow. The k-ε model yields unrealistically thick bottom layer (BL) and interfacial layer (IL). A new technique so-called very large eddy simulation (VLES) which allows the use of k-ε model in non-hydrostatic models is also employed. It is found that VLES results the most realistic reproduction of the observations. Furthermore, the non-hydrostatic model is improved by introducing laterally average terms, so the model can simulate the constrictions not only in the z-direction but also in the y-direction. Observational data from the Bosphorus Strait is employed to test the spatially average 2D non-hydrostatic model (SAM) in a realistic application. The simulations from SAM with a simple Smagorinsky type closure appear to be excessively diffusive and noisy. We show that SAM can benefit significantly from VLES turbulence closures. Second, the performance of different second-order turbulence closures is extensively tested in a hydrostatic model. Four different two-equation turbulence closures (k-&epsilon, k-&omega, Mellor-Yamada 2.5 (MY2.5) and a modified version of k- &epsilon) and K-Profile Parameterization (KPP) are selected for the comparison of 3D numerical simulations of the Red Sea overflow. All two-equation turbulence models are able to capture the vertical structure of the Red Sea overflow consisting of the BL and IL. MY2.5 with Galperin stability functions produce the largest salinity deviations from the observations along two sections across the overflow and the modified k-&epsilon exhibits the smallest deviations. The rest of the closures fall in between, showing deviations similar to one another. Four different closures (k- &epsilon, k-&omega, MY2.5KC and KPP) are also employed to simulate the Mediterranean outflow. The numerical results are compared with observational data obtained in the 1988 Gulf of Cadiz Expedition. The simulations with two-equation closures reproduce the observed properties of the overflow quite well, especially the evolution of temperature and salinity profiles. The vertically integrated turbulent salt flux displays that the overflow goes under significant mixing outside the west edge of the Strait of Gibraltar. The volume transport and water properties of the outflow are modified significantly in the first 50 km after the overflow exits the strait. The k-&epsilon and k-&omega cases show the best agreement with the observations. Finally, the interaction between the Red Sea overflow and Gulf of Aden (GOA) eddies has been investigated. It is found that the overflow is mainly transported by the undercurrent at the west side of the gulf. The transport of the overflow is episodic depending strength and location of GOA eddies. The most crucial finding is that the Red Sea overflow leaves the Gulf of Aden in patches rather than one steady current. Multiple GOA eddies induce lateral stirring, thus diapycnal mixing of the Red Sea outflow.
520

Riemannian Geometry of Quantum Groups and Finite Groups with

Shahn Majid, Andreas.Cap@esi.ac.at 21 June 2000 (has links)
No description available.

Page generated in 0.0445 seconds