• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Survey Methods and Development of Species Distribution Models for Kit Foxes in the Great Basin Desert

Dempsey, Stephen J. 01 May 2013 (has links)
Historically, kit foxes (Vulpes macrotis) once occupied the desert and semi-arid regions of southwestern North America, ranging from Idaho to central Mexico. Their range-wide decline has warranted the kit fox to be listed as endangered in Colorado, threatened in California and Oregon, and designated as a state sensitive species in Idaho and Utah. Once considered the most abundant carnivore in western Utah, the kit fox has been in steep decline over the past decade, creating a demand to determine kit fox presence. Currently there is little consensus on which survey methodology is best to detect kit fox presence. We tested 4 survey methods (scat deposition, scent station, spotlight, trapping) along 15 5-km transects within a minimum known population of radio collar kit fox. Home range sizes for kit foxes on the study site were extremely large, averaging 20.5 km2. Scat deposition surveys had both the highest detection probabilities (= 0.88) and were the most closely related to known fox abundance (r2 =0.50, P = 0.001). For detecting kit foxes in a low density population we suggest using scat deposition transects during the breeding season. This method had low costs, was resilient to weather, had low labor requirements, and entailed no risk to the study animals.Next in determining kit fox presence is estimating kit fox distribution. We developed resource selection functions (RSF) using presence data from the noninvasive scat surveys to model kit fox distribution. We evaluated the predictive performance of RSFs built using three popular techniques (Maxent, fixed-effects and mixed-effects general linear models) combined with common environmental parameters (slope, aspect, elevation, soil type). Both the Maxent and fixed-effects models performed to an acceptable level with relatively high area under the curve (AUC) scores of 0.83 and 0.75, respectively. The mixed-effects model over valued higher elevations and had poor model fit. This study demonstrated that it was possible to create valid and informative predictive maps of a species distribution using a noninvasive survey method for detecting a carnivore existing at low density. By demonstrating the application of noninvasive surveying to model habitat quality for a small mesocarnivore, wildlife management agencies will be able to develop predictive maps for species of interest and provide more knowledge to help guide future management decisions.
2

Ecotypic Variation in Elymus Elymoides Subspecies Brevifolius Race C in the Northern Intermountain West

Parsons, Matthew C. 01 December 2008 (has links)
Little information is available on the extent of local adaptation for many native grass species. This is the case for squirreltail (Elymus section Sitanion), despite this group's prevalence and importance in rangeland restoration efforts. I evaluated 32 populations of E. elymoides ssp. brevifolius race C, a phylogenetic subdivision of bottlebrush squirreltail (E. elymoides) centered in the northern Intermountain West, for phenotypic variables and neutral genetic markers to measure their association with geographical origin. Phenotypic traits were measured in common field and greenhouse environments, and genetic diversity was assessed using Amplified Fragment Length Polymorphism. Three factors were extracted from the phenotypic data set using common factor analysis. Factor 1 explained 37.7% of the variation among all of the variables; it had positive factor loadings for phenology (late maturity), biomass, and leaf area index, negative loadings for leaf area and root length, and was negatively correlated with elevation (r = -0.71). Factor 2 explained 14.5% of the variation among all of the variables; it had positive factor loadings for plant height and leaf number per tiller, negative loadings for seed yield and tiller number, and was positively correlated with longitude (r = 0.54) and average annual minimum temperature (r = 0.39). Factor 3 explained 12.8% of the variation among all of the variables; it had highly positive factor loadings for specific root length and specific leaf area, negative loadings for canopy height and mass per tiller. Correlations among phenotypic, environmental, genotypic, and geographic-origin distances were positive (r = 0.723-0.900), which suggests that ecotypic variation is an important feature of this group. This information, in conjunction with previously established Level III ecoregions, was used to delineate four adaptive zones for race C.
3

The Cascading Effects of Invasive Grasses in North American Deserts: The Interactions of Fire, Plants, and Small Mammals

Bowman, Tiffanny R. 01 March 2015 (has links) (PDF)
The landscapes of the Great Basin and Mojave Deserts are changing due to plant invasion. Highly flammable invasive grasses increase the size and frequency of fire causing a cascade of effects through the plant and animal communities. One of the most influential animal groups in desert systems is small mammals. We sought to learn how small mammals are impacted by fire and how their influence on the plant community differs between burned and unburned habitat. Small mammals did not have higher rates of mortality as a direct result of a controlled burn. In the Great Basin, there were short-term reductions in abundance, richness, and diversity of the small mammal community in burned plots. In the Mojave, species richness and diversity increased in burned plots shortly after fire and no abundance differences were detected. These results correspond with our prediction based on the dominant small mammal species at each site. Small mammals are primarily granivores; however, they also have strong impacts on the plant community via folivory. We tested for small mammal impacts on seedling survival in burned and unburned habitat. Small mammal access, burned vs. unburned habitat, and plant species were all important determinants of survival. Small mammals greatly reduced survival at both sites in burned and unburned habitat and often had a stronger impact in unburned than burned plots. Accounting for small mammal folivory may be a crucial step in successful post-fire rehabilitation. Finally, we used seed trays to test how small mammals influence the persistence of seed on the landscape. Small mammals reduced persistence of an invasive and native plant species in the Great Basin in 2012, yet a year later when small mammal abundance was reduced, no small mammal effect was observed. In the Mojave, persistence was reduced for the majority of species both years of the study. Small mammals did not appear to avoid seed of invasive plant species as we had predicted and may be important consumers reducing the reproductive potential of these invaders. If small mammals do prefer non-native seedlings over natives and are also consuming non-native seed, they may be greatly reducing the presence of non-natives both on the unburned landscape as well as after fire. Non-native consumption by small mammals could aid in the biotic resistance of these desert ecosystems. This research further enforces the important role that small mammals play as consumers, dispersers, and regulators of the plant community.
4

Diversity and Abundance of the Dark Kangaroo Mouse, <em>Microdipodops megacephalus</em>, in Communities of Nocturnal Granivorous Rodents in Western North America

Haug, Ashley Sagers 12 March 2010 (has links) (PDF)
The dark kangaroo mouse, Microdipodops megacephalus, is a sensitive species in the Great Basin Desert. This thesis explores the structure of desert rodent communities of the Great Basin to better understand M. megacephalus' place in the community and the conditions that promote large and stable populations. To determine community structure, I used nestedness analysis to evaluate 99 communities of nocturnal granivorous rodents. I found that the community structure was non-random, indicating the existence of assembly rules and ecological constraints. I also found that M. megacephalus was the second most vulnerable species in the community. To explore the correlation between species diversity and relative abundance, I performed regression analyses on M. megacephalus and five commonly co-occurring species of the nocturnal granivore guild: Perognathus longimembris (little pocket mouse), Perognathus parvus (Great Basin pocket mouse), Dipodomys ordii (Ord's kangaroo rat), Dipodomys microps (chisel-toothed kangaroo rat), and Peromyscus maniculatus (deer mouse). Results showed a positive correlation between rodent species diversity and relative abundance for M. megacephalus, P. longimembris, P. parvus, and D. microps, and a negative correlation for D. ordii and P. maniculatus. To further understand community composition, I ran interspecific association analyses based on presence-absence data for the six species using chi-square to determine strength of interspecific associations. I found positive interspecific associations between M. megacephalus and P. parvus, between P. longimembris and P. parvus, between P. longimembris and D. microps, and between D. microps and P. maniculatus, and a negative association between P. longimembris and P. maniculatus. A species cluster dendogram with respect to sites in common further supports the interspecific association results. A site cluster dendogram with respect to species abundances implies that dune habitat promotes diversity but not uniformity. All results indicate that M. megacephalus is more abundant and stable at sites with high species richness. The results also provide evidence for the existence of assembly rules, competition, and niche partitioning in desert rodent communities.

Page generated in 0.0903 seconds