• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Forming Ceramic Turbine Rotor by Green Machining

Huang, Shao-Yen 12 September 2007 (has links)
Ceramics can highly withstand the environments of high temperature and serious erosion, it completely substitutes for alloys which reach their specific limitations. Turbine rotor operates in the compressed stage with temperature over thousand Celsius degrees; it must rely on excellent properties of ceramics to elevate the durability and lifetime. To manufacture complex ceramic component before, industry usually uses near net shaping or rapid prototyping (RP) processes. A manufacturing process based on machining green ceramic turbine component is presented here. Initially, formulating a series of machining experiments for green ceramics to verify the idea of thesis, and analyzing the probability of Al2O3 ceramic as a turbine material. Firstly, it needs to check the machinability of green ceramic by face milling. Secondly, point milling the normal plate of green compact and the plate with analogical blade geometry to find a set of usable machining parameters (such as revolution speed, feed rate, step over and cutting depth); meanwhile, addressing machining amendment by observing the final conditions of specific geometric characteristics on workpiece. Finally, try to machining green ceramic turbine successfully applying the above parameters.

Page generated in 0.0656 seconds