• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The design of fibre reinforced composite blades for passive and active wind turbine rotor aerodynamic control

Karaolis, Nicos M. January 1989 (has links)
No description available.
2

Rotor dynamic analysis of 3D-modeled gas turbinerotor in Ansys

Samuelsson, Joakim January 2009 (has links)
<p>The world we are living in today is pushing the technology harder and harder. The products need to get better and today they also need to be friendlier to the environment. To get better products we need better analysis tools to optimize them and to get closer to the limit what the material can withstand. Siemens industrial Turbomachinery AB, at which thesis work is made, is constructing gas and steam turbines. Gas and steam turbines are important in producing power and electricity. Electricity is our most important invention we have and most of the people are just taking electricity for granted. One way to produce electricity is to use a gas turbine which is connected to a generator and by combing the turbine with a steam turbine the efficiency can be up to 60 %. That is not good enough and everybody want to get better efficiency for the turbines, meaning less fuel consumption and less impact on the environment.</p><p>The purpose of this thesis work is to analyze a tool for rotor dynamics calculations. Rotor dynamics is important in designing a gas turbine rotor because bad dynamics can easily lead to disaster. Ansys Classic version 11 is the analyze program that is going to be evaluated for the rotor dynamic applications. Nowadays rotor dynamics is done with beam elements i.e. 1D models, but in this thesis work the beam elementsare going to be changed to solid elements. With solid elements a 3D model can be built and thanks to that more complex calculations and simulations can be made. For example, with a 3D model 3D effects can be shown and e.g. simulations with blade loss can be done. 3D effects are not any problem today but in the future the gas turbines have to get better and maybe also the rotational speed will increase.</p><p>Ansys isn’t working perfectly yet, there are some problems. However Ansys have a good potential to be an additional tool for calculations of rotor dynamics, because more complex calculations and simulations can be done. More knowledge and time needs to form the rules to modeled a rotor and developing the analysis methods. Today the calculated lateral critical speeds are lower than the ones obtained from the in-house program Ardas version 2.9.3 which is used in Siemens Industrial Turbomachinery AB today. The difference between the programs are not so big for the four first lateral modes, only 3-8 %, but the next three lateral modes have a difference of 10-20 %. The torsion frequencies from Ansys are the same as the ones from Ardas, when the Solid186 elements are used to model the blades.</p>
3

Aerodynamic measurements on a small HAWT rotor in axial and yawed flow

Bellia, J. M. January 1990 (has links)
Current wind turbine performance codes are not yet able to predict the rotor aerodynamic behaviour with sufficient certainty. This has led to both the over-design of blades and to operational restrictions in certain wind conditions. Essentially the problem is one of aerodynamic stall. Steady 3-dimensional stall can occur near the blade root in high wind conditions and may produce more power than predicted. Dynamic stall can also be expected due to the effects of yawed operation, turbulence, tower shadow and the earth's boundary layer. The main aim of this work is to provide a coherent set of measured aerodynamic data accounting for both axial/non-axial flow and stall in high winds. These measurements are designed to highlight the effects of both steady and dynamic stall on the rotor aerodynamic performance. In addition, the data will enable current performance prediction codes to be developed and validated. A completely new turbine has been designed and built at Cranfield to make aerodynamic measurements using pressure transducers. The design has been dominated by the requirements of accommodating the transducer signal processing equipment and allowing variation of many of the rotor parameters. Three commercial glass fibre blades were installed and performance curves measured on a conventional field site at a height of 11.5m for three rotor speed settings. These measurements show the turbine to give adequate power performance. A mobile trailer has been used to tow the turbine at a height of 4m along the Cranfield runways. Mobile testing facilitates an accelerated test schedule and allows aerodynamic data to be acquired under controlled wind conditions. A fully instrumented blade, fitted with forty transducers, has been tested under these circumstances and produced a large database of pressure measurements covering operation in winds up to 25 iq/s and yaw angles between -4511 and +55°. Analysis of the data has shown it to be of good quality and allowed some of the effects of yaw and stall to be identified. The use of the data base for performance prediction code validation has also been established.
4

Rotor dynamic analysis of 3D-modeled gas turbinerotor in Ansys

Samuelsson, Joakim January 2009 (has links)
The world we are living in today is pushing the technology harder and harder. The products need to get better and today they also need to be friendlier to the environment. To get better products we need better analysis tools to optimize them and to get closer to the limit what the material can withstand. Siemens industrial Turbomachinery AB, at which thesis work is made, is constructing gas and steam turbines. Gas and steam turbines are important in producing power and electricity. Electricity is our most important invention we have and most of the people are just taking electricity for granted. One way to produce electricity is to use a gas turbine which is connected to a generator and by combing the turbine with a steam turbine the efficiency can be up to 60 %. That is not good enough and everybody want to get better efficiency for the turbines, meaning less fuel consumption and less impact on the environment. The purpose of this thesis work is to analyze a tool for rotor dynamics calculations. Rotor dynamics is important in designing a gas turbine rotor because bad dynamics can easily lead to disaster. Ansys Classic version 11 is the analyze program that is going to be evaluated for the rotor dynamic applications. Nowadays rotor dynamics is done with beam elements i.e. 1D models, but in this thesis work the beam elementsare going to be changed to solid elements. With solid elements a 3D model can be built and thanks to that more complex calculations and simulations can be made. For example, with a 3D model 3D effects can be shown and e.g. simulations with blade loss can be done. 3D effects are not any problem today but in the future the gas turbines have to get better and maybe also the rotational speed will increase. Ansys isn’t working perfectly yet, there are some problems. However Ansys have a good potential to be an additional tool for calculations of rotor dynamics, because more complex calculations and simulations can be done. More knowledge and time needs to form the rules to modeled a rotor and developing the analysis methods. Today the calculated lateral critical speeds are lower than the ones obtained from the in-house program Ardas version 2.9.3 which is used in Siemens Industrial Turbomachinery AB today. The difference between the programs are not so big for the four first lateral modes, only 3-8 %, but the next three lateral modes have a difference of 10-20 %. The torsion frequencies from Ansys are the same as the ones from Ardas, when the Solid186 elements are used to model the blades.
5

Forming Ceramic Turbine Rotor by Green Machining

Huang, Shao-Yen 12 September 2007 (has links)
Ceramics can highly withstand the environments of high temperature and serious erosion, it completely substitutes for alloys which reach their specific limitations. Turbine rotor operates in the compressed stage with temperature over thousand Celsius degrees; it must rely on excellent properties of ceramics to elevate the durability and lifetime. To manufacture complex ceramic component before, industry usually uses near net shaping or rapid prototyping (RP) processes. A manufacturing process based on machining green ceramic turbine component is presented here. Initially, formulating a series of machining experiments for green ceramics to verify the idea of thesis, and analyzing the probability of Al2O3 ceramic as a turbine material. Firstly, it needs to check the machinability of green ceramic by face milling. Secondly, point milling the normal plate of green compact and the plate with analogical blade geometry to find a set of usable machining parameters (such as revolution speed, feed rate, step over and cutting depth); meanwhile, addressing machining amendment by observing the final conditions of specific geometric characteristics on workpiece. Finally, try to machining green ceramic turbine successfully applying the above parameters.
6

Time-Averaged and Time-Accurate Aerodynamic Effects of Rotor Purge Flow for a Modern, Rotating, High-Pressure Turbine Stage and Low-Pressure Turbine Vane

Green, Brian Richard 16 December 2011 (has links)
No description available.
7

Fractal grid-turbulence and its effects on a performance of a model of a hydrokinetic turbine

Mahfouth, Altayeb 04 January 2017 (has links)
This thesis focuses on generating real world turbulence levels in a water tunnel rotor test using fractal grids and characterizing the effect of the fractal grid generated-turbulence on the performance of hydrokinetic turbines. The research of this thesis is divided into three studies: one field study and two laboratory studies. The field study was conducted at the Canadian Hydro Kinetic Turbine Test Centre (CHTTC) on the Winnipeg River. An Acoustic Doppler Velocimeter (ADV) was used in the field study to collect flow measurements in the river. The laboratory studies were conducted at the University of Victoria (UVic) fluids research lab and the Sustainable Systems Design Lab (SSDL). In addition, the Particle Image Velocimetry (PIV) technique was used in the experiential studies to obtain quantitative information about the vector flow field along the test section, both upstream and downstream of the rotor’s plane. The first study is a field study aiming to provide real flow characteristics and turbulence properties at different depths from the free-surface to boundary layer region of a fast river current by conducting a field study in the Winnipeg River using ADV. A novel technique to deploy and control an ADV from free-surface to boundary layer in a fast-current channel is introduced in this work. Flow characteristics in the river, including mean flow velocities and turbulence intensity profiles are analyzed. The obtained results indicate that the maximum mean velocity occurs below the free-surface, suggesting that the mean velocity is independent of the channel depth. From the free-surface to half depth, it was found that changes in both the mean velocity and turbulence intensity are gradual. From mid-depth to the river bed, the mean velocity drops rapidly while the turbulence intensity increases at a fast rate. The turbulent intensity varied from 9% at the free-surface to around 17.5% near the river bed. The results of this study were used in the second lab study to help designing a fractal grid for a recirculating water flume tank. The goal was to modify the turbulence intensity in the water tunnel such that the generated turbulence was similar to that in the river at a location typical of a hydrokinetic device. The properties of fractal-generated turbulence were experimentally investigated by means of 2D Particle Image Velocimetry (PIV). The streamwise turbulent intensity profiles for different grids along the channel are presented. Additionally, visualization of the average and fluctuating flow fields are also presented. The results are in good agreement with results in literature. The third and final study investigated the power coefficient of a scale hydrokinetic turbine rotor in controlled turbulent flow (7.4 % TI), as well as in the low-turbulence smooth flow (0.5% TI) typical of lab scale testing. PIV was employed for capturing the velocity field. The results show that using realistic TI levels in the water tunnel significantly decrease the turbine’s power coefficient compared to smooth flow, highlighting the importance of considering this effect in future experimental campaigns. / Graduate
8

Analysis of Turbine Rotor Tip Clearance Losses and Parametric Optimization of Shroud

Banks, William V., III January 2019 (has links)
No description available.
9

Space--Time Computation of Wind-Turbine Aerodynamics With Higher-Order Functions in Time

McIntyre, Spenser 16 September 2013 (has links)
This thesis is on the space--time variational multiscale (ST-VMS) computation of wind-turbine rotor and tower aerodynamics. The rotor geometry is that of the NREL 5MW offshore baseline wind turbine. We compute with a given wind speed and a specified rotor speed. The computation is challenging because of the large Reynolds numbers and rotating turbulent flows, and computing the correct torque requires an accurate and meticulous numerical approach. The presence of the tower increases the computational challenge because of the fast, rotational relative motion between the rotor and tower. The ST-VMS method is the residual-based VMS version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method, and is also called ``DSD/SST-VMST'' method (i.e., the version with the VMS turbulence model). In calculating the stabilization parameters embedded in the method, we are using a new element length definition for the diffusion-dominated limit. The DSD/SST method, which was introduced as a general-purpose moving-mesh method for computation of flows with moving interfaces, requires a mesh update method. Mesh update typically consists of moving the mesh for as long as possible and remeshing as needed. In the computations reported here, NURBS basis functions are used for the temporal representation of the rotor motion, enabling us to represent the circular paths associated with that motion exactly and specify a constant angular velocity corresponding to the invariant speeds along those paths. In addition, temporal NURBS basis functions are used in representation of the motion and deformation of the volume meshes computed and also in remeshing. We name this ``ST/NURBS Mesh Update Method (STNMUM).'' The STNMUM increases computational efficiency in terms of computer time and storage, and computational flexibility in terms of being able to change the time-step size of the computation. We use layers of thin elements near the blade surfaces, which undergo rigid-body motion with the rotor. We compare the results from computations with and without tower, and we also compare using NURBS and linear finite element basis functions in temporal representation of the mesh motion.
10

Návrh axiálního stromečkového závěsu lopatky regulačního stupně pro parní turbíny / Design of the axial dendritic suspension of steam turbine rotor blade

Vrbka, Dušan January 2011 (has links)
This master thesis deals with axial dendritic suspension of steam turbine rotor blade. The initial shape of the suspension was design on the basis of available data. There was performed stress-strain analysis of this shape and most dangerous spots were picked. There were made several geometrical changes of the shape of suspension. Their affection on stress-strain responding of the suspension was examined. The best shape was chosen which was used to perform analysis of infinite life according to ASME code and due to loading low cycle fatigue analysis. According to results of low cycle fatigue analysis the maximum loading was established. At the end of this work the further steps were suggested.

Page generated in 0.0417 seconds