Spelling suggestions: "subject:"green word"" "subject:"creen word""
1 |
A study of tall oil from green and seasoned slash pine woodMax, Keith W. (Keith William) 01 January 1943 (has links)
No description available.
|
2 |
Influence de la modification chimique de l’interface sur la dispersion des renforts lignocellulosiques dans les Green Wood Plastic Composites (GWPC) : apport de la modélisation sur l’optimisation des propriétés mécaniques / Influence of the chemical modification of the interface on the dispersion of lignocellulosic reinforcements in Green Wood Plastic Composites GWPC : numerical model contribution on the optimization of the mechanical propertiesRodi, Erica 13 December 2017 (has links)
Cette étude se concentre sur les « Green Wood Plastic Composites » (GWPC) élaborés avec des matrices de type polyesters aliphatiques biodégradables tels que le poly(-caprolactone) PCL, le poly(acide lactique) PLA et le poly(3-hydroxybutyrate-co-3-hydroxyvalérate) PHBHV renforcées par des fibres de Miscanthus giganteus. Afin d’améliorer l‘adhésion entre les fibres végétales et les matrices thermoplastiques, une modification chimique des fibres a été mise au point. Il s’agit de greffer des chaînes de polyesters, de même nature que la matrice, à la surface des fibres végétales, en utilisant la réactivité des doubles liaisons de la lignine par des réactions de type thiol-ène. Comme ces doubles liaisons sont peu nombreuses un agent polyfonctionnel, un polythiol, a été utilisé. Ce type de greffage a permis d’obtenir une réelle augmentation des propriétés mécaniques des composites à base de PCL et de PHBHV. Différentes techniques de mise en œuvre, extrusion, mélangeage, compression et extrusion réactive ont été utilisés afin d’étudier leur influence sur les comportements mécaniques des biocomposites. L'effet de la teneur en fibres, de leur taille et de leur disposition dans la matrice ont été étudiés. Différents modèles analytiques et numériques ont été mis en œuvre pour déterminer le comportement mécanique effectif des biocomposites. Cette étude suggère que le modèle de Mori-Tanaka avec des fibres sous forme d'inclusions cylindriques constitue une bonne approximation du comportement mécanique réel des matériaux. L'utilisation de modèles à éléments finis (FE) a révélé que la transmission de la contrainte appliquée est plus efficace dans le cas de composites à fibres courtes et que les modèles 3D sont plus réalistes que les 2D correspondants. Les modèles mathématiques mis en œuvre et concernant le processus d'extrusion réactive, responsable du greffage du polymère mais également de sa réticulation semblent pouvoir estimer la fraction de la matrice réticulée. Les composites à base de PLA présentent un module d’Young comparable aux composites réalisés avec le poly(propylène) et une bonne résistance dans des conditions de vieillissement peu agressives. L'interdisciplinarité de ce travail basé sur l'association systématique des modèles numériques à la réalisation des biocomposites est une approche complète pour cerner les propriétés de ces matériaux / This study focuses on the Green Wood Plastic Composites (GWPC), manufactured using biodegradable aliphatic polyesters as matrixes, like poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) and poly(lactic acid) (PLA) reinforced with Miscanthus giganteus fibers. In order to improve the adhesion between the thermoplastic matrixes and the vegetal fibers, a chemical treatment of these last was developed. The grafting of polyesters chains of the same nature as the matrix, was carried out on the surface of vegetal fibers, using the reactivity of unsaturated bonds present in the lignin structure through the use of the thiol-ene reaction. As these double bonds are few a polyfunctional agent, a polythiol, was used. This type of grafting allowed to obtain a real increase in the mechanical properties of biocomposites realized with PCL and PHBHV. Various manufacturing techniques such as extrusion, mixing, injection, compression molding and reactive extrusion were used to study their influence on the mechanical behavior of biocomposites. The effect of fibers content, sizes and arrangement in the matrix were also studied. Different analytical and numerical models were implemented to determine the effective mechanical behavior of the biocomposites. This study suggests that a Mori-Tanaka model with fibers as cylindrical inclusions constitutes a good approximation of the real mechanical behavior of the biocomposites. The use of finite element (FE) models revealed that the transmission of the applied stress is more efficient in the case of composites with short fibers and that 3D FE models are more realistic than their corresponding 2D. Mathematical models here implemented concerning the reactive extrusion process, this last being responsible not only of the polymer grafting but also of the polymer cross-linking, seem to be able to estimate the fraction of cross-linked matrix. PLA-based composites exhibit a Young Modulus comparable to their equivalent realized with poly(propylene), showing also a good resistance to mild aging conditions. The interdisciplinarity of this work based on the systematic association of numerical models to the practical realization of the biocomposites constitutes a complete approach to determine the properties of these materials
|
3 |
The relationship between the anatomy and mechanical properties of different green wood speciesOzden, Seray January 2016 (has links)
Trees are exposed to many stresses over their lifetime and withstand them due to their woody skeleton which provides excellent mechanical support. Wood has therefore been one of the most used materials throughout the history of humanity. However, the mechanical properties of wood vary considerably depending on wood anatomy and also show significant differences between and within trees. Wood is a cellular solid, characterised by a high degree of anisotropy at all levels of organisation and is formed by cells which are oriented largely in the longitudinal and radial directions, making wood mechanics rather complicated. Therefore, there is a need for an understanding of the mechanical properties of wood in different species and in different parts of the tree and its relationship to wood anatomy. This study began with two investigations into the transverse toughness of green trunk wood in different tree species including both hardwood and conifers. Double-edge notched tensile tests were conducted on the specimens to quantify their specific fracture energies and evaluate their failure fashions. The influence of wood anatomy on the toughening mechanism of wood was observed using both electron microscopy and light microscopy. It was found that the fracture properties of woods were mainly affected by the wood density and anatomy. Hardwoods were found to have higher fracture energies than conifers due to their denser woods and higher volume fraction of rays. The results also found that the specific fracture energies of RL and RT systems were around 1.5-2 times greater than TL and TR systems. This difference was mainly explained by the presence of rays which provided toughness in the radial direction, at least in hardwoods, as breaking across rays resulted in spiral fractures of the cell walls. The mechanical properties of green branches and coppice shoots of three temperate tree species (chestnut, sycamore and ash), were then investigated at three distances from the tip. The study also investigated how bending failure was influenced by the morphology and anatomy of branches and coppice shoots. Coppice shoots were shown to be more likely to buckle in bending, whereas branches failed with a clean fracture. It was shown that ash and sycamore had greater properties in their coppice shoots than their branches, while chestnut showed better properties in their branches. It was suggested that this occurred because increasing the leaf node frequency resulted in a decrease in mechanical properties; ash and sycamore had more leaf nodes in their branches, thus lower properties in their branches, while chestnut had more leaf nodes in its coppices. The mechanical properties also decreased from base to tips of branches and coppice shoots because of falls in diameter of shoots and wood density. The results also suggested why coppice shoots can act as a useful structural material. Finally, this thesis investigated how and why the fracture properties vary around the structure of tree forks. The fracture properties of green hazel forks were examined using double-edge notched tensile tests in the RT and TR directions. The fracture surfaces were also observed using scanning electron microscopy in both fracture systems. The results showed that the central apex of forks were considerably tougher than other locations, suggesting they provide the load-bearing capacity of tree forks. It was shown that the increased toughness was related to both higher wood density and an interlocking wood grain pattern. Interestingly, the TR fracture system was found to be tougher than the RT fracture system at the central apex of forks, probably related to the orientation of the fibres. These results provide insight into the relationship between wood mechanics and anatomy, particularly showing the importance of rays. They can also help us understand how our ancestors shaped wood and designed tools and how we could design better structures.
|
4 |
Development of a method for estimating moisture content in green wood using vibrational properties / 振動特性を用いた生材の含水率推定方法の開発Fukui, Toshiyuki 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第25326号 / 農博第2592号 / 新制||農||1105(附属図書館) / 京都大学大学院農学研究科森林科学専攻 / (主査)准教授 簗瀬 佳之, 教授 矢野 浩之, 教授 仲村 匡司, 教授 村田 功二 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
5 |
A Study to Determine the Effectiveness of Polyethylene Glycol 1000 for Forming Wood Veneer Projects from Green LumberKoesler, Rudolph John 12 1900 (has links)
The problem was to determine the effectiveness of using polyethylene glycol 1000 in the treatment of green wood for the purpose of forming projects made of wood veneer and of simple design for use in junior high or high school woodworking classes.
The purpose of this study was to seek answers to the following questions.
1. Is polyethylene glycol 1000 an effective stabilizing agent for green wood veneer that can be used in school woodworking classes?
2. Can green wood veneer treated with polyethylene glycol 1000 be bent to form simple woodwork projects?
3. Can green wood veneer treated with polyethylene glycol 1000 be successfully used in junior high and high school woodworking classes?
4. What length of treatment time is best for green wood veneer that is to be used to form simple bent wood projects?
5. Is one-fourth inch thickness suitable for green wood veneer that is to be treated with polyethylene glycol 1000 and used to form simple bent wood projects?
|
6 |
Faisabilité du déroulage du bois assisté par infrarouge. / Feasibility of wood peeling assisted by infrared.Dupleix, Anna 13 December 2013 (has links)
Le déroulage permet de transformer un billon en un ruban continu de bois vert (de 0.6 à plus de 3 mm d'épaisseur) appelé “placage”. La production de placages joue un rôle important dans l'industrie du bois car les placages servent de base d'un grand nombre de produits industriels (ex : Parallel Strand Lumbers (PSL), Laminated Veneer Lumber (LVL), contreplaqués, emballages légers, etc.) parmi les plus utilisés dans l'industrie du bois. Pour certaines essences, ce procédé exige un prétraitement, appelé « l'étuvage » qui consiste à chauffer au préalable le bois vert (saturé en eau) par immersion dans l'eau ou dans la vapeur d'eau chaude afin de lui conférer une déformabilité remarquable tout en diminuant les efforts de coupe. Cette pratique présente cependant de nombreux inconvénients industriels et environnementaux (fentes à cœur, faible rendement, dépense énergétique importante, pollution des eaux, fentes à cœur, traitement immobilisant des stocks de bois importants pour des longues périodes,…).L'objectif de cette étude est de développer une innovation majeure pour les industries du déroulage et du tranchage, visant à remplacer les pratiques d'étuvage par une technologie de chauffe embarquée sur les machines de production. La technologie de chauffe par rayonnement infrarouge a été retenue pour sa facilité de mise en place sur la machine (panneaux rayonnants peu encombrants) et sa rapidité à atteindre des températures source élevées pouvant ainsi suivre les cadences de déroulage rapides exigées par les industriels (de 1 à 5 m.s-1). Cette nouvelle technologie utilisant les infrarouges pour chauffer le bois vert avant le déroulage serait une innovation majeure pour les industries impliquées dans la fabrication du contreplaqué, LVL, etc.Pour ce faire, l'étude a été conduite en quatre temps:-Elaboration d'un modèle numérique permettant la simulation de la chauffe de bois ronds déroulé avec différents paramètres du bois (humidité, propriétés thermiques),-Caractérisations thermique et optique du bois vert (en termes de profondeur de pénétration et de capacité d'absorption des rayonnements infrarouge) pour alimenter le modèle,-Validation du modèle par des essais de déroulage avec chauffe embarquée.L'apport majeur de cette étude est d'avoir démontré que la pénétration des rayonnements infrarouge dans le bois se limite à quelques dizaines de micromètres. La propagation de la chaleur jusqu'au plan de coupe situé à quelques millimètres sous la surface s'effectue donc par conduction, mode de transfert de chaleur lent dans le cas du bois aux propriétés isolantes remarquables. La chauffe embarquée semble donc inadaptée face aux cadences de déroulage imposées par les industriels. L'utilisation d'une telle technologie dans le cas du tranchage reste à étudier et en particulier l'impact de l'absence d'étuvage par immersion sur la qualité des placages (couleur, état de surface). / In the wood-products industry ‘peeling' is the process of converting a log into a continuous thin ribbon of green wood (from 0.6 to more than 3 mm thickness) termed veneer. Veneers are mainly used for manufacturing light weight packaging and Engineer Wood Products (EWP) such as plywood, Laminated Veneer Lumber (LVL) and Parallel Strand Lumbers (PSL). These three latter EWPs manufactured from veneers glued and pressed together, are amongst the most used wood products. That is the reason why the production of veneer plays an important role in the wood-products industry. For certain species, the peeling process requires the prior heating of round green-wood to temperatures ranging from 30 to 90 °C. This treatment is necessary to increase wood deformability, to reduce the severity of lathe checking in the veneers and to reduce cutting forces. It is usually done by immersion in hot water or by steam treatment. However it has many disadvantages amongst which are the duration of treatment (12 to 72 hours), the washing out of polyphenolic extractives - which causes water pollution and can affect wood's natural durability - low yield and energy losses.The goal of this PhD thesis was to develop a heating system embedded on the peeling lathe to circumvent many of these disadvantages. Infrared technology appears to be the most promising solution because of the ease of integration into the peeling process and of the power it offers, enabling the required heating temperatures to be achieved quickly and follow the highly demanding peeling speeds in use in the industry (from 1 to 5 m.s-1). This new technology, using radiant energy to heat green-wood prior to peeling, would be a major innovation for the industries involved in the production of plywood, Laminated Veneer Lumber (LVL), etc.The plan to achieve this goal consisted of:- Creating a model of infrared heat transfer in green wood while peeling it, with the characteristics of wood (moisture content, thermal properties) being amongst the input variables,-Investigating the thermal and optical characteristics of green wood (in terms of penetration depth and infrared absorption by green wood) to feed the model,-Validating the model with experimental peeling tests assisted by an infrared heating system.One of the main outputs of this study was to demonstrate that the penetration depth of infrared radiation into green wood is limited to several tenths of micrometers. Heat transfer into green wood up to the cutting plane (located several millimeters underneath the surface) is by conduction, which is slow due to the insulating properties of wood. Heating green wood with infrared radiation is therefore unable to match the highly demanding peeling rates in use in the industry today. However, the use of an embedded heating system in the case of slicing and the potential impact on improving veneer quality (colour, surface quality) remain open for further research.
|
7 |
Développement de contreplaqués pour la construction navale : caractérisation multiéchelle et compréhension des phénomènes de collage du pin maritime à l'état vert / Plywood manufacture for the shipbuilding industry : multi-scale characterisation and understanding of wet maritime pine adhesion phenomenaLavalette, Anne 04 December 2013 (has links)
L’objectif de cette thèse est de développer des panneaux de contreplaqué collés à l’état vert à destination des coques et de l'agencement de bateaux. La technologie du moulage sous vide est choisie pour former des panneaux constitués de plis de pin Maritime déroulés non séchés et collés à l'aide d'un adhésif polyuréthane. Une étude approfondie été réalisée dans le but de fixer les paramètres de collage permettant aux contreplaqués de répondre aux exigences requises dans la construction navale. L’influence des paramètres de fabrication du panneau sur ses propriétés mécaniques est déterminée à partir d’un plan d'expériences. La teneur en eau et le grammage d'adhésif appliqué sont particulièrement étudiés. Le comportement mécanique des différents échantillons de contreplaqué a été caractérisé grâce à des tests normalisés de cisaillement et des tests de flexion. Des mesures de mouillabilité ainsi que des observations microscopiques des joints ont permis de mieux comprendre les résultats mécaniques, et d'expliquer les phénomènes physico-chimiques mis en jeu. Le matériau retenu à partir de cette étude est mis en œuvre dans un démonstrateur, pour validation du procédé utilisé. / The subject of this work is the manufacturing of green-glued plywood panels for the interior and the plating of a ship. The vacuum-moulding process is chosen to produce panels by assembling maritime pine veneers in the wet state with polyurethane adhesive. A study has been done to fix the parameters for gluing so that the manufactured plywood can answer to the mechanical characteristics required by the shipbuilding sector. The effect of several gluing parameters on the panel's mechanical properties is determined by an experimental design method. The wood moisture content when gluing and the amount of adhesive applied are mainly studied. The plywood panels' mechanical characterisations are realised using standardised shear tests and bending tests. In addition to the mechanical tests, wettability measures and bond lines microscopic observations provide a better understanding of the physic-chemical phenomena of green wood gluing. The material defined in this study is implemented in a boat hull prototype.
|
8 |
Caractérisation mécanique du bois vert au cours de sa maturation et modélisation de la réaction gravitropique de jeunes peupliers / Mechanical characterization of green wood during maturation process and modeling of gravitropic reaction of young poplarsPot, Guillaume 11 October 2012 (has links)
Les arbres sont capables de modifier l’orientation de leurs branches et de leur tronc par la production asymétrique de bois précontraint. Il existe des modèles biomécaniques développés pour simuler ces mouvements, mais ils ne simulent pas correctement le redressement (ou mouvement gravitropique) de jeunes arbres à l’échelle de temps intra-annuelle. La méconnaissance de la cinétique de maturation et des propriétés mécaniques du bois vert est responsable de ces résultats. Les travaux présentés dans ce mémoire ont pour objectifs de caractériser le comportement mécanique du bois vert au cours de sa maturation, et de développer un modèle biomécanique qui puisse simuler quantitativement le gravitropisme de jeunes peupliers. Des comportements mécaniques non-linéaires sont révélés par des essais de traction cycliques sur de fines lamelles de bois vert. Ils sont quantifiés par une grandeur mécanique liant rigidité et déformation. Des essais de flexion réalisés sur des planchettes renseignent quant à eux sur l’évolution intra-cerne du module élastique. Ces campagnes d’essais montrent une augmentation puis une diminution du module au cours de la maturation des cellules. Des essais de fluage indiquent que le comportement viscoélastique du bois vert se modélise par un modèle de Burgers. Les propriétés viscoélastiques du bois vert sont ainsi déterminées. Les propriétés mécaniques obtenues sont utilisées dans un modèle biomécanique développé pour modéliser l’évolution spatio-temporelle des propriétés. Le gravitropisme de jeunes peupliers est alors modélisé grâce à la prise en compte du comportement viscoélastique du bois vert, de la maturation continue des cellules, et de la variation des déformations de maturation au cours de la saison de végétation. / Trees are able to modify the orientation of their trunk and branches by asymmetrical production of prestressed wood. Biomechanical models designed to simulate these movements exist, but they cannot fit the righting-up movement (also called gravitropism) of young poplar trees at the intra-annual scale. The lack of knowledge of green wood maturation and mechanical properties is suspected to be responsible for this discrepancy. The aims of this study are to characterize mechanical properties of green wood during the maturation process, and to develop a biomechanical model that simulates quantitatively the gravitropism of young poplars. Nonlinear mechanical behavior is observed in cyclic tensile tests performed on thin lamellas of green wood. A relationship between stiffness and strain enables the characterization of this behavior. The intra-ring evolution of modulus of elasticity is measured using 3-points bending tests on small boards. Both of these experimental campaigns show that wood stiffness increases then decreases while cells are maturating. Creep tests show that green wood viscoelastic behaviour is described by a Burgers’ model. As a result, green wood viscoelastic properties are determined. These mechanical properties are used in a new biomechanical model designed for considering spatio-temporal evolutions of wood properties. Then the gravitropic movements of young poplars are simulated by considering viscoelastic behaviour of green wood, continuous maturation of cells, and variation of maturation strains along the growing season.
|
9 |
Acclimatation de l'arbre aux flexions répétées et conséquences sur le comportement mécanique et les propriétés hydrauliques du bois vert : Biologie végétale / Tree acclimation to periodic bending and consequences on the mechanical behaviour and the hydraulic properties of green woodNiez, Benjamin 17 December 2018 (has links)
Les arbres, enracinés au sol, adaptent leur développement à leur environnement fluctuant et en particulier aux conditions mécaniques imposées en permanence par le vent. Les tempêtes des dernières décennies ont mis en lumière le rôle majeur, pour la survie à long-terme des arbres, du processus d’acclimatation aux contraintes mécaniques dues au vent. Au premier ordre, le vent exerce principalement des efforts de flexion répétés sur les branches et tiges des arbres qui tendent à osciller pendant les épisodes venteux. Ces flexions entrainent une modification de la croissance des arbres en hauteur, en diamètre ou au niveau du système racinaire mais également la formation d’un bois à l’anatomie et aux propriétés particulières ; lequel est désigné par le terme « bois de flexion ». Au cours de ces travaux de thèse, nous avons développé des dispositifs expérimentaux originaux nous permettant, d’une part, d’appliquer des traitements de flexions unidirectionnelles répétées sur des tiges de jeunes peupliers, en contrôlant l’amplitude des déformations appliquées à la tige, et d’autre part, de contrôler différents niveaux de stress hydrique. Les suivis de croissance pendant une saison de végétation complète ont montré que l’acclimatation mécanique des arbres est un processus qui, bien que très couteux en matière de construction de biomasse, s’avère primordial et se met en place même lors de conditions de stress hydrique sévère. De plus, nous avons pu démontrer que l’augmentation de biomasse liée à cette acclimatation s’effectue principalement dans les zones où les déformations tissulaires sont les plus fortes ; conduisant ainsi à des géométries de sections particulières qui accroissent considérablement la rigidité de flexion des tiges. Une modélisation mécanique par éléments finis a aussi permis de révéler que ces configurations issues de l’acclimatation conduisent à une meilleure répartition des contraintes mécaniques, en abaissant en particulier l’intensité des contraintes maximales de compression subies par le bois. Afin de descendre dans les échelles spatiales, nous avons développé des outils et des méthodes de caractérisation originaux qui ont permis de mesurer, au niveau tissulaire, l’impact des différents types de sollicitations (compression et/ou traction répétées), engendrées au cours d’une flexion de tige, sur les propriétés hydrauliques et mécaniques du bois vert ; tant du point de vue des propriétés usuelles (comportement élastique, conduction hydraulique) que du point de vue des fonctions de sécurité (rupture, sensibilité à la cavitation, …). Nous avons alors pu mettre en évidence le comportement singulier du bois formé sous sollicitations de compressions répétées qui montre en particulier une nette augmentation de sa capacité à subir des déformations importantes avec un endommagement très réduit. L’ensemble des résultats expérimentaux et de modélisation aux échelles tissulaires comme de l’organe entier, indique que les acclimatations de la croissance secondaire et des propriétés intrinsèques du matériau bois procurent un bénéfice mécanique pour la pérennité de l’arbre dans son environnement venteux fluctuant. / Trees, anchored in the ground, adjust their development to their fluctuating environment and particularly to the mechanical conditions daily imposed by wind. Storms of last decades enlightened that acclimation of trees to mechanical stresses due to wind is a vital requirement for their long-term survival. Wind mainly leads to repeated bending of the branches and stems of trees that swing during windy events. These bending cause a modulation of trees growth in height, in diameter or at the level of the root system but also imply the formation of a wood with specific anatomy and properties; this wood was defined as “Flexure wood”. In our work, we developed original experimental setups in order to apply a treatment of repeated unidirectional bending to the stem of young poplars, while controlling the magnitude of the strains applied to the stem. The setup controlled different levels of hydric stress too. The monitoring of the growth during a growing season showed that the mechanical acclimation is a process that, although costly in terms of biomass construction, turns out to be essential and takes place even under severe hydric stress. Besides, we demonstrated that the increase of biomass, linked to this acclimation, is mainly provided in the areas where tissue strains are the highest; leading to specific cross-section geometries that considerably increase the stem bending rigidity. A mechanical modelling using Finite Elements also enlightens that these configurations, due to acclimation, lead to a better distribution of mechanical stresses, especially by decreasing the intensity of maximal compressive stresses endured by wood. In order to investigate the microscopic scale, original experimental devices were developed at the tissue scale to measure the effect of different mechanical stresses (repeated compression and/or tension), applied by stem bending, on the hydraulic and mechanical properties of green wood; as much in terms of usual properties (elastic behaviour, hydraulic conduction) as in terms of security functions (rupture, sensibility to cavitation, …). Thus, we enlighten the specific behaviour of wood formed under repeated compressive stresses that shows a significant increase of its ability to withstand high levels of strains with a very reduced damaging. The whole experimental and modelling results, as much at the tissue scale as at the tree scale, points out that the acclimations of secondary growth and wood properties provide a mechanical benefit for tree sustainability in its fluctuating windy environment.
|
10 |
Analyse, modélisation et simulation de la coupe orthogonale du bois vert en vue de son application au fraisage par canter / Analysis, modeling and simulation of green wood orthogonal cutting process for milling with chipper-canter applicationCurti, Rémi 06 November 2018 (has links)
Lors de la première transformation du bois en scierie, les grumes sont surfacées ou équarries par des têtes de fraisages appelées slabber ou canter. Sous leur action, le copeau de bois est fragmenté en plaquettes dont la valorisation est un enjeu majeur de la filière. Débouché le plus rémunérateur de cette ressource, l’industrie de la pâte à papier impose des critères dimensionnels aux plaquettes approvisionnées notamment concernant leur épaisseur. L’objectif de l’étude est donc d’améliorer la compréhension des mécanismes mis en jeu par la coupe du bois, dans une configuration simplifiée de coupe orthogonale, afin d’optimiser la granulométrie des plaquettes produites. Une campagne expérimentale de coupe sur machine-outil à commande numérique a été réalisée sur du hêtre vert afin de déterminer les mécanismes principaux actionnés. Un modèle mécanique simplifié du comportement dynamique du bois vert est déterminé, ceci afin de développer un modèle numérique du bois vert par la Méthode des Eléments Discrets (DEM) en vue de simuler sa coupe. Une étude préliminaire pour déterminer la capacité de la méthode à modéliser à l’échelle mésoscopique des milieux fortement orthotropes a été réalisée. Sa capacité et ses limites démontrées, la démarche de calibration du modèle numérique a été élaborée et le modèle sollicité en configuration de coupe orthogonale numérique. Les premières simulations présentent des résultats encourageants. / When entering sawmills, logs are faced into cants by the mean of chipper-canters. During this machining, the ribbon produced is split into small chips whose proper valorization is a high economic stake for the industry. The paper maker industry, which is the most worthwhile chips supplier, is strongly concerned by dimensional criterions of the chips for their process optimization, especially toward their thickness. The objective of this work is to improve the comprehension of cutting and fragmentation mechanisms, in a simplified orthogonal cutting configuration, to provide cutting rules to optimize the produced chips geometry. An experimental campaign dedicated to green beech cutting on a computer numerical command machining center is done to study those mechanisms. A simple mechanical model is derived, in order to develop a Discrete Element Method (DEM) model of the material to simulate cutting operations. A preliminary study dedicated to prove the capability of DEM to model a wood-like orthotropic continuous media is presented. The numerical model is then calibrated and cutting simulations are designed to copy the experimental conditions. First results are encouraging.
|
Page generated in 0.0334 seconds