• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Summer CO2 fluxes : A field study from three large lakes in Sweden

Beijer, Martin, Skoglund, Madeleine January 2019 (has links)
Increasing levels of CO2 in the atmosphere is a contributing cause to climate change. To give a better understanding, natural sources of CO2 is as important as anthropogenic sources, such as burning fossil fuels. The current role of large boreal lakes as emitters of CO2 are poorly understood and there is a clear lack of data from different types of systems. The aim of this thesis was to examine CO2 fluxes from Roxen, Glan and Vättern, three large lakes in Sweden. The purpose of the study was also to compare different approaches to get empirical CO2 flux data, and to investigate if there was difference between the lakes and study periods. Floating chambers were used as method with both direct measured fluxes and calculated fluxes. The direct fluxes were measured with sensors equipped inside the chambers. The calculated fluxes were obtained with gas samples from the chambers, water samples and wind speed in k-wind models. The results showed both temporal and spatial variability between the periods and the lakes. The results also showed a difference between the methods, where CO2 fluxes from sensors (direct measurements) ranged from -36 to 152 mmol m-2 d-1 and the calculated fluxes from the CC-model (Cole & Caraco 1998) ranged from –29 to 58 mmol m-2 d-1. / Ökande halter av CO2 i atmosfären är en bidragande faktor till klimatförändringar. För att få en bättre förståelse för de så behövs kunskap om naturliga flöden, inte enbart antropogena källor, som t.ex. förbränning av fossila bränslen som störst fokus kretsar kring. Den nuvarande kunskapsnivån om större nordiska sjöars CO2 utsläpp är begränsad, och det finns en tydlig brist i data från dessa typer av system. Målet med denna uppsats var att utforska CO2 flöden från Roxen, Glan och Vättern, tre stora sjöar i Sverige. Syftet med studien var också att jämföra olika sätt att samla in empiriskt material samt undersöka om det fanns skillnader mellan sjöarna samt de olika studerade perioderna. Flytande kammare användes för att samla in prover som mättes direkt genom en sensor, men de användes också för att ta manuella gasprover som sedan beräknade flödet av CO2 med hjälp av modeller i efterhand. Resultatet visade både på skillnader i tid och rum mellan perioderna och sjöarna. Resultatet visade även att det fanns en skillnad mellan de olika metoderna vi använde oss av, där sensor (direkta mätningar) var mellan -36 to 152 mmol m-2 d-1 och flödesberäkningarna från CC-modellen (Cole & Caraco 1998) var –29 to 58 mmol m-2 d-1.
2

Water Quality Performance And Greenhouse Gas Flux Dynamics From Compost-Amended Bioretention Systems & Potential Trade-Offs Between Phytoremediation And Water Quality Stemming From Compost Amendments

Shrestha, Paliza 01 January 2018 (has links)
Stormwater runoff from existing impervious surfaces needs to be managed to protect downstream waterbodies from hydrologic and water quality impacts associated with development. As urban expansion continues at a rapid pace, increasing impervious cover, and climate change yields more frequent extreme precipitation events, increasing the need for improved stormwater management. Although green infrastructure such as bioretention has been implemented in urban areas for stormwater quality improvements and volume reductions, these systems are seldom monitored to validate their performance. Herein, we evaluate flow attenuation, stormwater quality performance, and nutrient cycling from eight roadside bioretention cells in their third and fourth years of implementation in Burlington, Vermont. Bioretention cells received varying treatments: (1) vegetation with high-diversity (7 species) and low-diversity plant mixes (2 species); (2) proprietary SorbtiveMediaTM (SM) containing iron and aluminum oxide granules to enhance sorption capacity for phosphorus; and (3) enhanced rainfall and runoff (RR) to certain cells (including one with SM treatment) at three levels (15%, 20%, 60% more than their control counterparts), mimicking anticipated precipitation increases from climate change. Bioretention water quality parameters monitored include total suspended solids (TSS), nitrate/nitrite-nitrogen (NOx), ortho-phosphorus (Ortho-P), total nitrogen (TN) and total phosphorus (TP), which were compared among bioretention cells’ inflows and outflows across 121 storms. Simultaneous measurements of flow rates and volumes allowed for evaluation of the cells’ hydraulic performances and estimation of pollutant load and event mean concentration (EMC) removal. We also monitored soil CO2 and N2O fluxes, as they represent a potential nutrient loss pathway from the bioretention cells. We determined C and N stocks in the soil media and vegetation, which are critical design elements of any bioretention, to determine the overall C and N balances in these systems. Significant average reductions in effluent stormwater volumes and peak flows were reported, with 31% of the storms events completely captured. Influent TSS loads and EMCs were well retained by all cells irrespective of treatments, storm characteristics, or seasonality. Nutrient removal was treatment-dependent, where the SM treatments consistently removed P loads and EMCs, and sometimes N as well. The vegetation and RR treatments mostly exported nutrients to the effluent. We attribute observed nutrient exports to the presence of excess compost in the soil filter media. Rainfall depth and peak inflow rate undermined bioretention performance, likely by increasing pollutant mobilization through the filter media. While the bioretention cells were a source of CO2, they varied between being a sink and source of N2O. CO2 fluxes were orders of magnitude higher than N2O fluxes. However, soil C and N, and plant C and N in biomass was seen to largely offset respiratory CO2-C and biochemical N2O-N losses from bioretention soil. The use of compost in bioretention soil media should be reduced or eliminated. If necessary, compost with low P content and high C: N ratio should be considered to minimize nutrients losses via leaching or gas fluxes. In order to understand trade-offs stemming from compost amendments, we conducted a laboratory pot study utilizing switchgrass and various organic soil amendments (e.g., different compost types and coir fiber) to a sandy loam soil contaminated with heavy metals and studied potential nutrient leaching and pollutant uptake. Addition of organic amendments significantly reduced metal bioavailability, and improved switchgrass growth and metal uptake potential. While no differences in soil or plant metal uptake were observed among the amendments, significant differences in nutrient leaching were observed.
3

Carbon and nutrient cycles depending on climate and land use along the elevation gradient of Mount Kilimanjaro

Becker, Joscha Nico 06 July 2017 (has links)
No description available.
4

Quantifying organic carbon fluxes from upland peat

Do, Phai Duy January 2013 (has links)
Present organic carbon fluxes from an upland peat catchment were quantified through measurement of in-situ direct and indirect greenhouse gas fluxes. To predict future greenhouse gas (GHG) fluxes, peat from eroded (E) and uneroded (U) site of an upland peat catchment was characterized.Composition of peat from E and U sites at the Crowden Great Brook catchment, Peak District Nation Park, UK that was characterized by Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) at 700 oC. Pyrolysis products of the peat were then classified using the Vancampenhout classification into 6 compound classes - viz. aromatic and polyaromatic (Ar), phenols (Ph), lignin compounds (Lg), soil lipids (Lp), polysaccharide compounds (Ps) and N-compounds (N). There was no significant difference in the composition between the eroded and uneroded sites within the study area or between peats from different depths within each site. Nevertheless, there was a significant difference between sites in the proportions of Sphagnum that had contributed to the peat. Pyrolysis products of the peat were also classified into pedogenic (Pd) and aquagenic (Aq) OC – the mean percentage of Pd in both eroded and uneroded peats was 43.93 ± 4.30 % with the balance of the OC classified as Aq.Greenhouse gas (GHG) fluxes were quantified directly by in-situ continuous measurement of GHG was carried out at the E and U sites of the catchment using a GasClam: mean in-situ gas concentrations of CH4 (1.30 ± 0.04 % v/v (E), 0.59 ± 0.05 % v/v (U) and CO2 (8.83 ± 0.22 % v/v (E), 1.77 ± 0.03 % v/v (U)) were observed, with both the CH4 and CO2 concentrations apparently unrelated to atmospheric pressure and temperature changes. Laboratory measurements of ex-situ gas production - for both CH4 and CO2 this was higher for U site soils than for E site soils. At the U site, maximum production rates of both CH4 (46.11±1.47 mMol t-1 day-1) and CO2 (45.56 ± 10.19 mMol t-1 day-1) were observed for 0-50 cm depth in soils. Increased temperature did not affect gas production, whilst increased oxygen increased gas production. The CH4/CO2 ratios observed in-situ are not similar to those observed in the ex-situ laboratory experiments; suggest that some caution is advised in interpreting the latter. However, the maximum OC loss of 2.3 wt. % observed after 20 weeks of ex-situ incubation is nevertheless consistent with the long-term degradation noted by Bellamy et al (1985) from organic-rich UK soils. Indirect greenhouse gas (GHG) fluxes were quantified through the mass flux of suspended organic carbon (SsOC) drained from studied catchments. The SsOC was quantified by interpolating and rating methods. Unfiltered (UF) organic carbon (OC) fluxes in 2010 were calculated to be 8.86 t/km2/yr for the eroded sub-catchment and 6.74 t/km2/yr for the uneroded sub-catchment. All the rating relationships have a large amount of scatter. Both UF OC and <0.2 µm fraction OC are positively correlated with discharge at the eroded site, whilst there is no discernable relationship with discharge at the uneroded site. SsOC is dominated by Pd type OC (95.23 ± 10.20 % from E; 92.84 ± 5.38 % from U) far more so than in sources of the peats, suggesting slower oxidation of Pd (cf. Aq) OC.

Page generated in 0.0841 seconds