• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Condensation de Bose-Einstein tout-optique en microgravité pour l'interférométrie atomique / All-optical Bose-Einstein condensation in microgravity for atom interferometry

Rabault, Martin 17 October 2019 (has links)
L’expérience I.C.E a pour objectif de tester le principe d’équivalence faible (WEP) à la base de la théorie de la relativité générale d’Einstein et postulant l’équivalence entre masse inertielle et masse grave. Si ce principe a toujours été vérifié jusqu’à aujourd’hui, il est d’un intérêt fondamental pour la physique moderne de poursuivre les mesures avec une précision accrue. En effet, de nouvelles théories d’unification de la mécanique quantique et de la relativité générale prévoient une violation de ce principe. Pour réaliser un test du WEP, il suffit de comparer les accélérations de deux objets en chute libre dans un même champ de gravitation, et c’est ce que réalise l’expérience I.C.E à l’échelle quantique (à la différence de la mission spatiale Microscope qui à ce jour a pu vérifier le WEP avec des objets macroscopiques avec une sensibilité sur le paramètre de 2.10−14). Ainsi, l’expérience consiste à réaliser, par une méthode interférométrique, la mesure de l’accélération de deux espèces atomiques (87Rb et 39K) de masses et de compositions différentes, en chute libre dans une enceinte à vide. La sensibilité de la mesure des effets inertiels auxquels les atomes sont sensibles (accélérations et rotations) est d’autant plus grande que la durée de chute libre des atomes est élevée et que la température des nuages est faible. Or, sur Terre au laboratoire, les atomes finissent par tomber au fond de l’enceinte les contenant sous l’effet de la gravité, ce qui limite grandement la sensibilité de la mesure. C’est pourquoi il est intéressant de placer l’expérience dans un environnement de micropesanteur dans lequel les atomes restent au centre de la chambre à vide afin d’atteindre des temps d’interrogation beaucoup plus longs. A ce titre, l’expérience est embarquée jusqu’à plusieurs fois par an, à bord de l’avion Zéro-g de la société Novespace. Les durées de micropesanteur proposées permettent d’atteindre des temps d’interrogation théoriques de l’ordre de la seconde ce qui doit porter le niveau de sensibilité à 10−11. Cependant, nous sommes aujourd’hui très fortement limités par le niveau élevé de vibrations et de rotations de l’avion : la perte de contraste des franges d’interférence engendrée ainsi que le bruit de phase introduit, ne nous permettent pas de dépasser des temps d’interrogation de 5 ms en 0 g. En parallèle, le laboratoire s’est récemment doté d’un simulateur de microgravité sur lequel est montée l’expérience, donnant accès à des temps d’interrogation de plus de 200 ms avec des trajectoires paraboliques d’une très bonne répétabilité (de l’ordre de 3 mg). La cohérence d’une source atomique étant directement reliée à sa température, l’utilisation de nuages ultra-froids est d’un grand intérêt pour améliorer le contraste des franges d’interférence, d’autant plus pour les longs temps d’interrogation visés. Le présent manuscrit synthétise les travaux ayant permis de produire le tout premier condensat de Bose-Einstein (la source atomique ultime) de 87Rb en microgravité par une méthode tout optique, et ce, de manière répétable toutes les 13,5 secondes. Nous démontrons l’efficacité de note méthode de chargement du piège dipolaire basée sur l’association d’un refroidissement par mélasse grise et d’une modulation spatiale des faisceaux dipolaires. Ces résultats ouvrent la voie vers de futures mesures interférométriques très sensibles à grand facteur d’échelle. / The I.C.E experiment aims at testing the weak equivalence principle (WEP) underlying Einstein’s theory of general relativity and which postulates the equivalence between inertial mass and gravitationnal mass. If this principle has always been verified until today, it is of fundamental interest for physics to continue the measurements with greater precision. Indeed, new unifying theories of quantum mechanics and general relativity predict a violation of this principle. To carry out a test of the WEP, it suffices to compare the accelerations of two objects in free fall in the same gravitationnal field. This is what the I.C.E experiment, on the quantum scale, achieves (unlike the spatial Microscope mission, which to date has been able to verify the principle of equivalence with macroscopic objects with a sensitivity on of 2.10−14). Thus, the experiment consists in performing, by an interferometric method, the measurement of the acceleration of two atomic species (87Rb and 39K) of different mass and composition in free fall in a vacuum chamber. The measurement sensitivity of the inertial effects to which the atoms are sensitive (accelerations and rotations) is all the greater as the free fall time of the atoms is high and their temperature is low. But on Earth, in the laboratory, the atoms eventually fall to the bottom of the vacuum chamber containing them under the effect of gravity, which greatly limits the measurement sensitivity achievable. This is why it is interesting to place the experiment in a microgravity environment in which the atoms stay in the center of the vacuum chamber in order to reach much longer interrogation times. As such, several times a year, the experiment is put aboard the aircraft Zero-g of the Novespace company. The available microgravity durations make it possible to reach theoretical interrogation times of the order of one second, which should raise the sensitivity level to 10−11. However, we are today very strongly limited by the high level of vibrations of the aircraft as well as its rotations : the loss of contrast of the interference fringes and the phase noise caused, do not allow us to exceed 5 ms of interrogation times in 0 g. Since the coherence of an atomic source is directly related to its temperature, the use of ultra-cold clouds is of great interest to improve the contrast of the interference fringes, especially for the long interrogation times targeted. In parallel, the laboratory is now equipped with a microgravity simulator on which is mounted the experiment, giving access to interrogation times of more than 250 ms with parabolic trajectories of a very good repeatability (of the order of 3 mg). This manuscript synthesizes the work that produced the very first 87Rb Bose-Einstein condensate in microgravity by all-optical methods, with a repetition rate of 13,5 seconds. We demonstrate the efficiency of our dipole trap loading method based on the association of a grey molasses cooling and a spatial modulation of the dipole beams. These results pave the way for future highly sensitive interferometric measurements with a large scale factor.
2

Mixtures of Bose and Fermi Superfluids / Mélanges de superfluides de Bose et de Fermi

Ferrier-Barbut, Igor 31 October 2014 (has links)
On trouve des manifestations de la physique quantique au niveau thermodynamique dansde nombreux systèmes. Un exemple marquant est la superfluidité, découverte au début du20ème siècle, que l’on retrouve de l’hélium aux étoiles à neutrons. Les gaz dilués ultrafroidsoffrent une polyvalence unique pour étudier des systèmes quantiquesmacroscopiques, pouvant directement tester les théories grâce à un environnementcontrôlé. Dans cette thèse, nous présentons plusieurs études expérimentales de gaz froidsde lithium. Le lithium fournit la possibilité de réaliser des ensembles de bosons et defermions, avec des interactions contrôlables entre les constituants. Nous présentons lestechniques utilisées pour préparer et étudier des gaz dégénérés de lithium, et uneamélioration possible des méthodes existantes. Nous décrivons premièrement une étudede la recombinaison à trois bosons avec une interaction à deux corps résonante. Comparésquantitativement à la théorie, ces résultats fournissent une référence pour les étudesfutures du gaz de Bose unitaire. Pour finir, nous présentons la première observationexpérimentale d’un mélange de superfluides de Bose et de Fermi. Nous démontrons queles deux composants sont superfluides et que leur écoulement relatif vérifie les propriétésdes écoulement superfluides, avec une absence de viscosité en dessous d’une vitessecritique puis la présence de dissipation au-delà. En utilisant des excitations collectives dece mélange, nous mesurons l’interaction entre les deux superfluides, en accord avec unmodèle théorique. / Manifestations of Quantum Physics at the thermodynamical level are found in a broadrange of physical systems. A famous example is superfluidity, discovered at the beginningof the 20th century and found in many different situations, from liquid helium to neutronstars. Dilute ultracold gases offer a unique versatility to engineer quantum many-bodysystems, which can be directly compared with theory thanks to the controllability of theirenvironment. In this thesis we present several experimental investigations led on ultracoldlithium gases. Lithium provides the possibility to study ensembles of bosons andfermions, with controllable interactions between the constituents. We present experimentaltechniques for preparation and studies of degenerate gases of lithium, with prospects forimprovement of the existing methods. We first report on an investigation of three-bodyrecombination of bosons under a resonant two-body interaction. This study, quantitativelycompared with theory constitutes a benchmark for further studies of the unitary Bose gas.Finally, we present the first experimental realization of a mixture of a Bose superfluid witha Fermi superfluid. We demon- strate that both components are in the superfluid regime,and that the counter-flow motion between them possesses the characteristics of superfluidflow, with the absence of viscosity below a critical velocity, and an onset of friction above.Using collective oscillations of the mixture, we measure the coupling between the twosuperfluids in close agreement with a theoretical model.

Page generated in 0.0363 seconds