• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Road to the Unitary Bose Gas

Rem, Benno S. 17 December 2013 (has links) (PDF)
Les gaz d'atomes ultra-froids sont devenus des systèmes polyvalente pour l'étude des effets à N corps. Le haut degré de contrôle qu'ils offrent ainsi que la possibilité de modifier les interactions inter- atomiques ont permis des avancées importantes dans la compréhension des états fortement corrélés de la matière. Dans le régime d'interactions fortes, l'étude des bosons, contrairement à celle des fermions, est entravée par la recombinaison à trois particules qui induisent des pertes d'atomes et empêche le système d'atteindre un réel état d'équilibre. Dans cette thèse, nous présentons la première comparaison théorie-expérience quantitative du co- efficient de perte à trois corps L_3(a,T), pour des valeurs arbitraires de la longueur de diffusion a et de température T. Pour la diffusion à deux corps unitaire (|a|→∞), nous montrons que le coefficient de pertes à trois corps suit la loi L_3(∞, T ) = λ_3/T^2, ce que nous avons testé en étu- diant un gaz piégée non-dégénéré de ^{7}Li maintenu à température constante. La valeur mesurée de λ_3 = 2.5(3)_{stat} (6)_{syst} × 10^{−20} (μK)^2 cm^6 s^{−1} est, à la précision expérimentale, en bon accord avec la prédiction théorique λ_3^{th} = 1.52 × 10^{−20}(μK)^2 cm^6 s^{−1}. Nous avons étendu ces mesures à des valeurs arbitraires de la longueur de diffusion. Pour a < 0, la théorie se raccorde à un modèle à température effective nulle pré-existant et le régime unitaire. Nous montrons aussi qu'une seconde résonance d'Efimov devrait être observable autour de a = −500 a0 pour une température de 1 μK. Finalement, nous comparons la prédiction théorique est confirmée par les mesures effectuées à Innsbruck avec le ^{133}Cs et à Cambridge avec le ^{39}K.
2

Mixtures of Bose and Fermi Superfluids / Mélanges de superfluides de Bose et de Fermi

Ferrier-Barbut, Igor 31 October 2014 (has links)
On trouve des manifestations de la physique quantique au niveau thermodynamique dansde nombreux systèmes. Un exemple marquant est la superfluidité, découverte au début du20ème siècle, que l’on retrouve de l’hélium aux étoiles à neutrons. Les gaz dilués ultrafroidsoffrent une polyvalence unique pour étudier des systèmes quantiquesmacroscopiques, pouvant directement tester les théories grâce à un environnementcontrôlé. Dans cette thèse, nous présentons plusieurs études expérimentales de gaz froidsde lithium. Le lithium fournit la possibilité de réaliser des ensembles de bosons et defermions, avec des interactions contrôlables entre les constituants. Nous présentons lestechniques utilisées pour préparer et étudier des gaz dégénérés de lithium, et uneamélioration possible des méthodes existantes. Nous décrivons premièrement une étudede la recombinaison à trois bosons avec une interaction à deux corps résonante. Comparésquantitativement à la théorie, ces résultats fournissent une référence pour les étudesfutures du gaz de Bose unitaire. Pour finir, nous présentons la première observationexpérimentale d’un mélange de superfluides de Bose et de Fermi. Nous démontrons queles deux composants sont superfluides et que leur écoulement relatif vérifie les propriétésdes écoulement superfluides, avec une absence de viscosité en dessous d’une vitessecritique puis la présence de dissipation au-delà. En utilisant des excitations collectives dece mélange, nous mesurons l’interaction entre les deux superfluides, en accord avec unmodèle théorique. / Manifestations of Quantum Physics at the thermodynamical level are found in a broadrange of physical systems. A famous example is superfluidity, discovered at the beginningof the 20th century and found in many different situations, from liquid helium to neutronstars. Dilute ultracold gases offer a unique versatility to engineer quantum many-bodysystems, which can be directly compared with theory thanks to the controllability of theirenvironment. In this thesis we present several experimental investigations led on ultracoldlithium gases. Lithium provides the possibility to study ensembles of bosons andfermions, with controllable interactions between the constituents. We present experimentaltechniques for preparation and studies of degenerate gases of lithium, with prospects forimprovement of the existing methods. We first report on an investigation of three-bodyrecombination of bosons under a resonant two-body interaction. This study, quantitativelycompared with theory constitutes a benchmark for further studies of the unitary Bose gas.Finally, we present the first experimental realization of a mixture of a Bose superfluid witha Fermi superfluid. We demon- strate that both components are in the superfluid regime,and that the counter-flow motion between them possesses the characteristics of superfluidflow, with the absence of viscosity below a critical velocity, and an onset of friction above.Using collective oscillations of the mixture, we measure the coupling between the twosuperfluids in close agreement with a theoretical model.

Page generated in 0.0563 seconds