• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design methodologies for advanced flywheel energy storage

Hearn, Clay Stephen 04 February 2014 (has links)
Higher penetration of volatile renewable sources and increasing load demand are putting a strain on the current utility grid structure. Energy storage solutions are required to maintain grid stability and are vital components to future smart grid designs. Flywheel energy storage can be a strong part of the solution due to high cycle life capabilities and flexible design configurations that balance power and energy capacity. This dissertation focuses on developing design methodologies for advanced flywheel energy storage, with an emphasis on sizing flywheel energy storage and developing lumped parameter modeling techniques for low loss, high temperature superconducting. The first contribution of this dissertation presents a method for using an optimal control law to size flywheel energy storage and develops a design space for potential power and energy storage combinations. This method is a data driven technique, that utilizes power consumption and renewable generation data from a particular location where the storage may be placed. The model for this sizing technique includes the spinning losses, that are unique to flywheel energy storage systems and have limited this technology to short term storage applications, such as frequency and voltage regulation. For longer term storage solutions, the spinning losses for flywheels must be significantly reduced. One potential solution is to use high temperature superconducting bearings, that work by the stable levitation of permanent magnet materials over bulk superconductors. These advanced bearing systems can reduce losses to less than 0.1% stored energy per hour. In order to integrate high temperature superconducting bearings into flywheel system designs, accurate and reduced order models are needed, that include the losses and emulate the hysteretic, non-linear behavior of superconducting levitation. The next two contributions of this dissertation present a lumped parameter axissymmetric model and a 3-D lumped parameter transverse model, which can be used to evaluate bearing lifting capabilities and transverse stiffness for flywheel rotor designs. These models greatly reduce computational time, and were validated against high level finite element analysis, and dynamic experimental tests. The validation experiments are described in detail. / text
2

Comparative life cycle assessment of different lithium-ion battery chemistries and lead-acid batteries for grid storage application

Yudhistira, Ryutaka January 2021 (has links)
With the rapid increase of renewable energy in the electricity grids, the need for energy storage continues to grow. One of the technologies that are gaining interest for utility-scale energy storage is lithium-ion battery energy storage systems. However, their environmental impact is inevitably put into question against lead-acid battery storage systems. Therefore, this study aims to conduct a comparative life cycle assessment (LCA) to contrast the environmental impact of utilizing lithium-ion batteries and lead-acid batteries for stationary applications, specifically grid storage. The main tools in this study include Microsoft Excel for the life cycle inventory and OpenLCA for life cycle modelling and sensitivity analysis. In this research, a cradle-to-grave LCA for three lithium-ion battery chemistries (i.e. lithium iron phosphate, nickel cobalt manganese, and nickel cobalt aluminium) is conducted. The impact categories are aligned with the Environmental Footprint impact assessment methodology described by the European Commission. The standby grid operation scenario is considered for estimating the environmental impacts, where the batteries would deliver 4,800 kWh of electric energy throughout 20 years. Consequently, the functional unit will be in per kWh energy delivered. The lead-acid battery system has the following environmental impact values (in per kWh energy delivered): 2 kg CO2-eq. for climate change, 33 MJ for fossil resource use, 0.02 mol H+-eq. for acidification, 10-7 disease incidence for particulate emission, and 8x10-4 kg Sb-eq. for minerals resource use. Going back to the lithium-ion batteries systems, for the climate change and fossil resource use impact categories, the best performer is found to be the nickel cobalt aluminium (NCA) lithium-ion battery, with 46% and 45% less impact than lead-acid for the respective categories. On the other hand, the nickel manganese cobalt (NMC) was the best for the acidification and particulate emission impact categories with respective 65% and 51% better performance compared to lead-acid batteries. Finally, for the minerals and metals resource use category, the lithium iron phosphate battery (LFP) is estimated to be the best performer, which is 94% less than lead-acid. To conclude, the life cycle stage determined to have the largest contribution for most of the impact categories was the use stage, which then becomes the subject to a sensitivity analysis. The sensitivity analysis was done by varying the renewable contribution of the electricity grids in the use phase. Overall, the lithium-ion batteries systems have less environmental impact than lead-acid batteries systems, for the observed impact categories. The findings of this thesis can be used as a reference to decide whether to replace lead-acid batteries with lithium-ion batteries for grid energy storage from an environmental impact perspective. / Med den snabba ökningen av förnybar energi i elnäten, fortsätter behovet av energilagring att växa. En av de tekniker som växer intresse för energilagring på nyttan är litiumjon batteriets energilagringssystem. Emellertid, deras miljöpåverkan ifrågasätts oundvikligen mot blysyrabatteri lagringssystem. Därför syftar denna studie till att göra en komparativ livscykelanalys (LCA) för att komparera miljöpåverkan av att använda litiumjonbatterier och blybatterier för stationära applikationer, särskilt för nätlagring. I denna forskning genomfördes en vagga-till-grav-LCA (eller cradle-to-grave i engelska) för tre litiumjonbatterikemi (litium järn fosfat, nickel kobolt mangan, och nickel cobalt aluminium). Effektkategorier anpassades till miljökonsekvensbedömning metoden som beskrivs av Europeiska kommissionen. Det användningsfall scenariot för batterierna var standby läget, där batterierna leverera 4800 kWh elektrisk energi för 20 år. Följaktligen den funktionella unit är i ‘per kWh levererad energi’. Blysyrabatteriet hade följande ungefärliga miljöpåverkansvärden (i per kWh levererad energi): 2 kg CO2-eq. för climate change, 33 MJ för fossil resource use, 0.02 mol H+-eq. för acidification, 10-7 disease incidence för particulate emission, and 8x10-4 kg Sb-eq. för minerals resource use. Tillbaka till litiumjonbatterierna, för climate change och fossil resource use resursanvändnings kategorier, den bäst presterande var litiumjonbatteriet nickel kobolt aluminium (NCA). Det hade 46% och 45% mindre påverkan än blysyrabatteriet för respektive kategori. Å andra sidan, var nickel mangan kobolt (NMC) bäst för acidifcation och particulate emission kategorier. De är 65% och 51% bättre än blysyra för kategorierna. Slutligen, litium järn fosfat batteriet (LFP) är det bäst presterande för resource use of minerals and metals kategoriet, vilket det är 94% mindre än blysyra. Avslutningsvis, det livscykelstadier som var bestämt att ha det största bidraget för de flesta av påverkningskategorierna är användningsstadiet, som sedan blir föremål för en känslighetsanalys. I slutändan, litiumjonbatterierna ha mindre miljöpåverkan än blybatterier i detta projekt, för de observerade slagkategorierna. Resultaten av denna avhandling kan sedan användas som referens för att avgöra om bly-syrabatterier ska ersättas med litiumjonbatterier för energilagring ur ett miljöeffektperspektiv.
3

EXPLORING MARKET FORCES FOR TRANSMISSION EXPANSION AND GRID STORAGE INTEGRATION : A technical-economic thesis about variation moderators for intermittent renewable power generation in the developed country of Sweden and the developing country of China

Eriksson, Pernilla, Sundell, Martin January 2015 (has links)
No description available.
4

Battery Storage as Grid Reinforcement for Peak Power Demands / Batterilagring som nätförstärkningsåtgärd vid topplasteffekter

Hilleberg, Jesper January 2023 (has links)
An increased amount of intermittent electricity production, more electric vehicles (EV), and an overall electrification of society may all cause a higher variability between the balance of supply and demand on the electric grid. Battery storage has been identified as a solution to the emerging problem asit can be charged during hours of low power demand and then discharged to help meet the power demand during peak loads. This master thesis investigates how characteristics from yearly power demand data can be defined so that a battery energy storage system (BESS) can be dimensioned for it and which parameters are important when dimensioning a BESS. The investment cost of the dimensioned BESS is investigated and calculated, and there is as well a general discussion of potentials, drivers, and barriers for a grid owner to implement a BESS. The master thesis includes a literature study and a case study performed together with Tekniska verken and its subsidiary company Tekniska verken Nät where three cases of varying sizes were investigated:• An EV charging station, with a peak power demand of up to 1 MW.• A distribution station, with an original peak power demand of close to 3 MW.• Purchased power from the regional grid, with a peak power demand of almost 152 MW. By dimensioning a BESS from a year-long data curve of the hourly power demand, a power limit was set. The highest peak power value over the power limit, the longest peak duration, and the highest energy peak were then identified to establish the curve characteristics. A battery storage was investigated to see if it could be used to meet the demand occurring when implementing a power limit to the yearly power demand curve. Batteries store electrical energy in the form of electrochemical energy and then transforms the energy back into electrical energy when needed and does so with varying efficiency according to the type of chemistry that is used in the battery. The so-called lithium ion (li-ion) battery is mostly used today and utilizes lithium in the shape of ions along with a metallic cathode and a carbon anode. The cathode and anode can vary in a li-ion battery chemistry, which varies its characteristics and means that there are multiple types of li-ion battery chemistry types. The specific li-ion battery chemistry lithium iron phosphate (LFP), was established as the most applicable battery due to its high energy density, easy to attain materials, general safety, maturity, and amount of discharge cycles it can handle throughout its lifetime. A BESS could be modelled from the LFP limitations and data curve for each case. The results showed that a short-duration variability of a power demand was a success factor for the implementation of a BESS. It allows the BESS to recharge often and the minimum required energy capacity could be lower and more optimal. An investment cost insecurity was established from literature when comparing estimates, as it could vary depending on the published date, used battery chemistry, taxes, and subsidies in the origin country of the literature. Therefore an estimate given by the Swedish transmission system operator (TSO), Svenska Kraftnät of 5-6 MSEK/MWh from a report published in late 2022 was deemed most relevant. An investment cost for each scenario in every case could be calculated and additional economical benefits relevant in the cases such as comparing to the cost of conventional grid reinforcement or economical gains from a lowered grid subscription were investigated. However, an overall conclusion that the investment cost of a BESS was too expensive to be deemed feasible and that there were no overwhelming economical gains from reducing the peak loads was made. A final generalization and discussion of drivers and barriers concluded that the applicability of a BESS can be identified by the defining characteristics of a demand curve. Moreover, it was found that the BESS investment cost was too high when only applying it for grid reinforcement methods. Although, a BESS can have additional benefits to the grid stability. The grid owner cannot however, own a BESS and use it on the frequency service market which otherwise would potentially make it economically feasible to strengthen the grid. The ultimate goal of the project is to help create a broader understanding of battery storage as part of the electrical network, where and when it can be applicable, and how one could go about investigating its use. / En ökad mängd variabel elproduktion, fler elbilar och en elektrifiering av samhället i helhet. Detta kommer skapa en högre variabilitet och därmed större obalans mellan tillförsel och efterfrågan på elnätet. Batterilagring har identifierats som en potentiell lösning till det ökade problemet då det kan laddas vid ett lågt effektbehov och urladdas vid ett högt effektbehov. Genom detta examensarbete kommer det undersökas hur karaktäristik från årliga effektkurvor kan definieras. Det görs i syfte av att dimensionera ett batterilagringssystem utefter datan. Därefter undersöks även vilka parametrar som är viktiga vid dimensioneringen av ett batterilagringssystem. Utefter de dimensionerade batterilagringssystemen tas även en investeringskostnad fram. En diskussion framförs även utifrån den generella potentialen, drivkrafter och barriärer som finns vid implementering av ett batterilagringssystem från perspektivet av en nätägare. Examensarbete består av en litteraturstudie och en fallstudie som genomförs i samarbete med Tekniska verken i Linköping AB och Tekniska verken Nät, där tre fall av varierande storlek undersöks:• En elbilsladdningstation, med ett toppeffektbehov på upp till 1 MW.• En fördelningsstation, med ett ursprungligt toppeffektbehov på nästan 3 MW.• Köpt effekt från det regionala nätet, där toppeffektbehovet uppgår till nästan 152 MW. Vid dimensionering av ett batterilagringssytem från den årliga effektkurvan måste en effektbegränsning sättas. Därefter kan den överstigande effektopplasten, den längsta tiden effektbegränsningen överstigs och den högsta överstigande energin tas fram, för att etablera kurvans karaktäristik. En undersökning gjordes om ett batterilager kunde användas för att möta effektbehovet då en effektbegränsning införs till den årliga effektkurvan. Batterier lagrar elektrisk energi i formen av elektrokemisk energi för att sedan transformera tillbaka det till elektrisk energi då det finns ett behov. Effektiviteten av transformeringen varierar beroende på den kemiska blandningen som batteriet är uppbyggt av. Det så kallade litiumjonbatteriet är det mest använda idag och nyttjar litium i formen av joner tillsammans med en metallisk katod och en anod av kol. Katod och anod kan variera vilket medför en förändrad karaktäristik och betyder alltså att det finns olika sorters litiumjonbatterier. Den specifika litiumjärnfosfat (LFP) blandningen ansågs mest användbar i elnätsapplikationer. Detta på grund av sin höga energidensitet, lättillgängliga material, generella säkerhet, teknikens mognad och mängden urladdningscyklar den kan hantera. Ett batterilagringssytem kunde då modellerades utefter LFP-batterikemin i kombination med den årliga effektkurvan för varje fall. Resultatet därifrån visade att en korttidsvariabilietet av effektbehovet var en framgångsfaktor vid implementeringen av ett batterilagringssystem. Detta då det tillåter för ett batterilagringsystem att återladdas oftare och en lägre minimal energikapacitet kan dimensioneras vilket gör den mer optimal. Vid undersökning av investeringskostnaden upptäcktes en svaghet i litteraturen vid jämförandet av kostnadsuppskattningar. Uppskattningen kunde variera beroende på publiceringsdatum, val av batterikemi, landets skatter och bidrag. Därav valdes en kostnadsuppskattning från den svenska stamnätsägaren, Svenska Kraftnät på 5–6 MSEK/MWh utifrån en rapport publicerat sent i 2022 som mest relevant. Utifrån kostnadsuppskattningen kunde en beräkning av investeringskostnad och ytterligare ekonomiska gynnsamheter relevanta för varje fall undersökas (såsom en jämförelse mot konventionell nätförstärkning eller sänkt abonnemangskostnad). Den generella slutsatsen som drogs var däremot att investeringskostnaden för ett batterilagringssystem var för dyrt för att vara ekonomiskt genomförbart. Det var dessutom inga betydande ekonomiska gynnsamheter som kunde ändra på det då batterilagringssystemet endast användes till att sänka toppeffektlaster. En avslutande generalisering och diskussion av drivkrafter och barriärer framgav att applicerbarheten av ett batterilagringsystem kunde definieras utifrån den identifierade karaktäristiken av den årliga effektkurvan. Dessutom framkom det att investeringskostnaden i varje fall var för hög då batterilagringssystemet endast nyttjades som nätförstärkning. Hursomhelst kan ett batterilagringssystem bidra till ytterligare fördelar i elnätets stabilitet. Elnätsägaren kan inte äga ett batterilagringssystem och använda det på effektreservmarknaden som annars kunde bidra till batterilagringssystemets ekonomiska genomförbarhet. Det slutliga målet av arbetet har varit att ge en bredare förståelse för batterilagring som en del av elnätet. Detta genom att ta reda på när och var det är applicerbart och hur man kan utvärdera dess användning.

Page generated in 0.0582 seconds