• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inverter-based Control to Enhance the Resiliency of a Distribution System

Shrestha, Pratigya 18 September 2019 (has links)
Due to the increase in the integration of renewable energy to the grid, there is a critical need for varying the existing methods and techniques for grid operation. With increased renewable energy, mainly wind and photovoltaics, there is a reduction in inertia as the percentage of inverter-based resources is increasing. This can bring about an issue with the maintenance and operation of the grid with respect to frequency and voltage. Thus, the ability of inverters to regulate the voltage and frequency becomes significant. Under normal operation of the system, the ability of the inverters to support the grid frequency and voltage while following the grid is sufficient. However, the operation of the inverters during a resiliency mode, under which there is an extended outage of the utility system, will require the inverter functionality to go beyond support and actually maintain the voltage and frequency as done by synchronous machines, acting as the grid-forming inverter. This project focuses on the operation of grid forming sources based on the virtual synchronous generator to regulate the voltage and frequency in the absence of the grid voltage through decentralized control of the inverters in the distribution feeder. With the most recent interconnection standard for the distributed generation, IEEE-1547 2018, the inverter-based generation can be used for this purpose. The simulations are performed in the Simulink environment and the case studies are done on the IEEE 13 node test-feeder. / Master of Science / With the increase in the renewable energy sources in the present grid, the established methods for the operation of the grid needs to be updated due to the changes that the large amount of renewable energy sources bring to the system. Due to the While the conventional resources in the power system was mainly synchronous generators that had an inherent characteristic for frequency support and regulation due to the inertia this characteristic can be lacking in many of the renewable energy sources that are usually inverter-based. At present, the commonly adapted function for the inverters is to follow the grid which is suitable in case of normal operation of the power system. However, during emergency scenarios when the utility is disconnected and a part of the system has to operate independently the inverters need to be able to regulate both the voltage and frequency on their own. In this project the inverter-based control, termed as the virtual synchronous generator, has been studied such that it mimics the well-established controls for the conventional generators so that the inverter-based renewable resource appears similar to the conventional generator from the point of view of the grid in terms of the electrical quantities. The utilization of this type of control for operation of a part of the feeder with each inverter-based resource controlling its output in a decentralized manner is studied. The controls try to mimic the established controls for conventional synchronous machine and use it for maintain operation of the system with inverters.
2

DYNAMIC MODELING OF INVERTER-BASED ANDELECTROMECHANICAL POWER GENERATION COMPONENTS USING A SPARSE TABLEAU APPROACH

Oindrilla Sanyal (18831502) 14 June 2024 (has links)
<p>The ongoing and rapidly accelerating integration of inverter-based resources (IBRs), such as solar panels, into power distribution systems has heightened the importance of computational tools that can be used to study the dynamics of such systems. IBRs use power electronics to interface the energy sources to the grid, thereby introducing faster dynamics than their electromechanical counterparts, which could lead to instabilities in distribution systems and microgrids. Hence, there is a need for conducting simulations of distribution systems containing large numbers of single- and three-phase inverters, which could be operating under either grid-following or grid-forming modes.</p> <p>A key objective of this thesis is to derive detailed, high-fidelity models of inverters and their controls in the context of unbalanced distribution networks. In addition, a diesel synchronous generator model is derived, for the sake of completeness. The main contribution of this work is that these models are developed for use in a novel simulation toolbox called Dynamic Simulation Tool using a Sparse Tableau Approach in Python, DynaSTPy (pronounced dynasty). This thesis outlines how the components can be modeled in the sparse tableau framework as electrical networks with topology described using a node-branch incidence matrix. In addition, the thesis explains how controller dynamics and constraints can be handled within this framework. These models are tailored to seamlessly integrate into the DynaSTPy toolbox. The proposed approach can be readily extended to model other such components in the future.</p>

Page generated in 0.1433 seconds