• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incorporating DFIG-Based Wind Power Generator in Microgird Frequency Stabilization

Fakhari Moghadam Arani, Mohammadreza January 2011 (has links)
Although wind power as a renewable energy is assumed to be an all-round advantageous source of energy, its intermittent nature can cause difficulties, especially in the islanding mode of operation. Conventional synchronous generators can help to compensate for wind fluctuations, but the slow behavior of such systems may result in stability concerns. In this study, the virtual inertia method, which imitates the kinetic inertia of a synchronous generator, is used to improve the system’s dynamic behavior. Since the proposed method incorporates no long-term power regulation, it requires no mass storage device and is thus economical. To preclude additional costs, a rotating mass connected to the Doubly Fed Induction Generator (DFIG) shaft or a super-capacitor connected to the DC-link on a back-to-back converter of a wind power generator could be used. The concept and the proposed control methods are discussed in detail, and eigen-value analysis is used to study how the proposed method improves system stability. As well, the advantages and disadvantages of using DFIG rotating mass or a super-capacitor as the virtual inertia source are compared. The proposed approach also shows that while virtual inertia is not incorporated directly in long-term frequency and power regulation, it may indirectly enhance the system’s steady-state behavior. A time domain simulation is used to verify the results of the analytical studies.
2

Incorporating DFIG-Based Wind Power Generator in Microgird Frequency Stabilization

Fakhari Moghadam Arani, Mohammadreza January 2011 (has links)
Although wind power as a renewable energy is assumed to be an all-round advantageous source of energy, its intermittent nature can cause difficulties, especially in the islanding mode of operation. Conventional synchronous generators can help to compensate for wind fluctuations, but the slow behavior of such systems may result in stability concerns. In this study, the virtual inertia method, which imitates the kinetic inertia of a synchronous generator, is used to improve the system’s dynamic behavior. Since the proposed method incorporates no long-term power regulation, it requires no mass storage device and is thus economical. To preclude additional costs, a rotating mass connected to the Doubly Fed Induction Generator (DFIG) shaft or a super-capacitor connected to the DC-link on a back-to-back converter of a wind power generator could be used. The concept and the proposed control methods are discussed in detail, and eigen-value analysis is used to study how the proposed method improves system stability. As well, the advantages and disadvantages of using DFIG rotating mass or a super-capacitor as the virtual inertia source are compared. The proposed approach also shows that while virtual inertia is not incorporated directly in long-term frequency and power regulation, it may indirectly enhance the system’s steady-state behavior. A time domain simulation is used to verify the results of the analytical studies.
3

Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response

Anzalchi, Arash 09 November 2017 (has links)
Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator.
4

Inverter-based Control to Enhance the Resiliency of a Distribution System

Shrestha, Pratigya 18 September 2019 (has links)
Due to the increase in the integration of renewable energy to the grid, there is a critical need for varying the existing methods and techniques for grid operation. With increased renewable energy, mainly wind and photovoltaics, there is a reduction in inertia as the percentage of inverter-based resources is increasing. This can bring about an issue with the maintenance and operation of the grid with respect to frequency and voltage. Thus, the ability of inverters to regulate the voltage and frequency becomes significant. Under normal operation of the system, the ability of the inverters to support the grid frequency and voltage while following the grid is sufficient. However, the operation of the inverters during a resiliency mode, under which there is an extended outage of the utility system, will require the inverter functionality to go beyond support and actually maintain the voltage and frequency as done by synchronous machines, acting as the grid-forming inverter. This project focuses on the operation of grid forming sources based on the virtual synchronous generator to regulate the voltage and frequency in the absence of the grid voltage through decentralized control of the inverters in the distribution feeder. With the most recent interconnection standard for the distributed generation, IEEE-1547 2018, the inverter-based generation can be used for this purpose. The simulations are performed in the Simulink environment and the case studies are done on the IEEE 13 node test-feeder. / Master of Science / With the increase in the renewable energy sources in the present grid, the established methods for the operation of the grid needs to be updated due to the changes that the large amount of renewable energy sources bring to the system. Due to the While the conventional resources in the power system was mainly synchronous generators that had an inherent characteristic for frequency support and regulation due to the inertia this characteristic can be lacking in many of the renewable energy sources that are usually inverter-based. At present, the commonly adapted function for the inverters is to follow the grid which is suitable in case of normal operation of the power system. However, during emergency scenarios when the utility is disconnected and a part of the system has to operate independently the inverters need to be able to regulate both the voltage and frequency on their own. In this project the inverter-based control, termed as the virtual synchronous generator, has been studied such that it mimics the well-established controls for the conventional generators so that the inverter-based renewable resource appears similar to the conventional generator from the point of view of the grid in terms of the electrical quantities. The utilization of this type of control for operation of a part of the feeder with each inverter-based resource controlling its output in a decentralized manner is studied. The controls try to mimic the established controls for conventional synchronous machine and use it for maintain operation of the system with inverters.
5

Sizing Methodology and Life Improvement of Energy Storage Systems in Microgrids

Khasawneh, Hussam Jihad 19 May 2015 (has links)
No description available.

Page generated in 0.1046 seconds