• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 12
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A variational approach for viewpoint-based visibility maximization

Rocha, Kelvin Raymond 19 May 2008 (has links)
We present a variational method for unfolding of the cortex based on a user-chosen point of view as an alternative to more traditional global flattening methods, which incur more distortion around the region of interest. Our approach involves three novel contributions. The first is an energy function and its corresponding gradient flow to measure the average visibility of a region of interest of a surface from a given viewpoint. The second is an additional energy function and flow designed to preserve the 3D topology of the evolving surface. This latter contribution receives significant focus in this thesis as it is crucial to obtain the desired unfolding effect derived from the first energy functional and flow. Without it, the resulting topology changes render the unconstrained evolution uninteresting for the purpose of cortical visualization, exploration, and inspection. The third is a method that dramatically improves the computational speed of the 3D topology-preservation approach by creating a tree structure of the triangulated surface and using a recursion technique.
12

Εντοπισμός θέσης υπομικροσυστοιχιών και spots σε ψηφιακές εικόνες μικροσυστοιχιών

Μαστρογιάννη, Αικατερίνη 05 January 2011 (has links)
Η τεχνολογία των DNA μικροσυστοιχιών είναι μια υψηλής απόδοσης τεχνική που καθορίζει το κατά πόσο ένα κύτταρο μπορεί να ελέγξει, ταυτόχρονα, την έκφραση ενός πολύ μεγάλου αριθμού γονιδίων. Οι DNA μικροσυστοιχίες χρησιμοποιούνται για την παρακολούθηση και τον έλεγχο των αλλαγών που υφίστανται τα επίπεδα της γονιδιακής έκφρασης λόγω περιβαλλοντικών συνθηκών ή των αλλαγών που λαμβάνουν χώρα σε ασθενή κύτταρα σε σχέση με τα υγιή, χρησιμοποιώντας εξελιγμένες μεθόδους επεξεργασίας πληροφοριών. Εξαιτίας του τρόπου με τον οποίον παράγονται οι μικροσυστοιχίες, κατά την πειραματική επεξεργασία τους, εμφανίζεται ένας μεγάλος αριθμός διαδικασιών που εισάγουν σφάλματα, γεγονός που αναπόφευκτα οδηγεί στην δημιουργία υψηλού επιπέδου θορύβου και σε κατασκευαστικά προβλήματα στα προκύπτοντα δεδομένα. Κατά την διάρκεια των τελευταίων δεκαπέντε ετών, έχουν προταθεί από αρκετούς ερευνητές, πολλές και ικανές μέθοδοι που δίνουν λύσεις στο πρόβλημα της ενίσχυσης και της βελτίωσης των εικόνων μικροσυστοιχίας. Παρά το γεγονός της ευρείας ενασχόλησης των ερευνητών με τις μεθόδους επεξεργασίας των εικόνων μικροσυστοιχίας, η διαδικασία βελτίωσης τους αποτελεί ακόμη, ένα θέμα που προκαλεί ενδιαφέρον καθώς η ανάγκη για καλύτερα αποτελέσματα δεν έχει μειωθεί. Στόχος της διδακτορικής διατριβής είναι να συνεισφέρει σημαντικά στην προσπάθεια βελτίωσης των αποτελεσμάτων προτείνοντας μεθόδους ψηφιακής επεξεργασίας εικόνας που επιφέρουν βελτίωση της ποιότητας των εικόνων μέσω της μείωσης των συνιστωσών του θορύβου και της τεμαχιοποίησης της εικόνας. Πιο συγκεκριμένα, στα πλαίσια εκπόνησης της διατριβής παρουσιάζεται μια νέα αυτόματη μέθοδος εντοπισμού της θέσης των υπομικροσυστοιχιών σκοπός της οποίας είναι να καλυφθεί εν μέρει το κενό που υπάρχει στην βιβλιογραφία των μικροσυστοιχιών για το βήμα της προεπεξεργασίας που αφορά στην αυτόματη εύρεση της θέσης των υπομικροσυστοιχιών σε μια μικροσυστοιχία. Το βήμα αυτό της προεπεξεργασίας, σπανίως, λαμβάνεται υπόψιν καθώς στις περισσότερες εργασίες σχετικές με τις μικροσυστοιχίες, γίνεται μια αυθαίρετη υπόθεση ότι οι υπομικροσυστοιχίες έχουν με κάποιον τρόπο ήδη εντοπιστεί. Στα πραγματικά συστήματα αυτόματης ανάλυσης της εικόνας μικροσυστοιχίας, την αρχική εκτίμηση της θέσης των υπομικροσυστοιχιών, συνήθως, ακολουθεί η διόρθωση που πραγματοποιείται σε κάθε μια από τις θέσεις αυτές από τους χειριστές των συστημάτων. Η αυτοματοποίηση της εύρεσης θέσης των υπομικροσυστοιχιών οδηγεί σε πιο γρήγορους και ακριβείς υπολογισμούς που αφορούν στην πληροφορία που προσδιορίζεται από την εικόνα μικροσυστοιχίας. Στην συνέχεια της διατριβής, παρουσιάζεται μια συγκριτική μελέτη για την αποθορυβοποίηση των εικόνων μικροσυστοιχίας χρησιμοποιώντας τον μετασχηματισμό κυματιδίου και τα χωρικά φίλτρα ενώ επιπλέον με την βοήθεια τεχνικών της μαθηματικής μορφολογίας πραγματοποιείται δραστική μείωση του θορύβου που έχει την μορφή «αλάτι και πιπέρι». Τέλος, στα πλαίσια της εκπόνησης της διδακτορικής διατριβής, παρουσιάζεται μια μέθοδος κατάτμησης των περιοχών των spot των μικροσυστοιχιών, βασιζόμενη στον αλγόριθμο Random Walker. Κατά την πειραματική διαδικασία επιτυγχάνεται επιτυχής κατηγοριοποίηση των spot, ακόμα και στην περίπτωση εικόνων μικροσυστοιχίας με σοβαρά προβλήματα (θόρυβος, κατασκευαστικά λάθη, λάθη χειρισμού κατά την διαδικασία κατασκευής της μικροσυστοιχίας κ.α.), απαιτώντας σαν αρχική γνώση μόνο ένα μικρό αριθμό από εικονοστοιχεία προκειμένου να επιτευχθεί υψηλής ποιότητας κατάτμηση εικόνας. Τα πειραματικά αποτελέσματα συγκρίνονται ποιοτικά με αυτά που προκύπτουν με την εφαρμογή του μοντέλου κατάτμησης Chan-Vese το οποίο χρησιμοποιεί μια αρχική υπόθεση των συνόρων που υπάρχουν μεταξύ των ομάδων προς ταξινόμηση, αποδεικνύοντας ότι η ακρίβεια με την οποία η προτεινόμενη μέθοδος ταξινομεί τις περιοχές των spot στην σωστή κατηγορία σε μια μικροσυστοιχία, είναι σαφώς καλύτερη και πιο ακριβής. / DNA microarray technology is a high-throughput technique that determines how a cell can control the expression of large numbers of genes simultaneously. Microarrays are used to monitor changes in the expression levels of genes in response to changes in environmental conditions or in healthy versus diseased cells by using advanced information processing methods. Due to the nature of the acquisition process, microarray experiments involve a large number of error-prone procedures that lead to a high level of noise and structural problems in the resulting data. During the last fifteen years, robust methods have been proposed by many researchers resulting in several solutions for the enhancement of the microarray images. Though microarray image analysis has been elaborated quite enough, the enhancement process is still an intriguing issue as the need for even better results has not decreased. The goal of this PhD thesis is to significantly contribute to the above effort by proposing enhancing methods (denoising, segmentation) for the microarray image analysis. More specifically, a novel automated subgrid detection method is presented introducing a pre-processing step of the subgrid detection. This step is rarely taken into consideration as in most microarray enhancing methods it is arbitrarily assumed that the subgrids have been already identified. The automation of the subgrid detection leads to faster and more accurate information extraction from microarray images. Consequently, the PhD thesis presents a comparative denoising framework for microarray image denoising that includes wavelets and spatial filters while on the other hand uses mathematical morphology methods to reduce the “salt&pepper”-like noise in microarray images. Finally, a method for microarray spot segmentation is proposed, based on the Random Walker algorithm. During the experimental process, accurate spot segmentation is obtained even in case of relatively-high distorted images, using only an initial annotation for a small number of pixels for high-quality image segmentation. The experimental results are qualitatively compared to the Chan-Vese segmentation model, showing that the accuracy of the proposed microarray spot detection method is more accurate than the spot borders defined by the compared method.

Page generated in 0.0567 seconds