• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Mirror Theorem for Toric Stack Bundles

You, Fenglong 31 October 2017 (has links)
No description available.
2

Symplectic topology, mirror symmetry and integrable systems.

Rossi, Paolo 21 October 2008 (has links) (PDF)
Using Sympelctic Field Theory as a computational tool, we compute Gromov-Witten theory of target curves using gluing formulas and quantum integrable systems. In the smooth case this leads to a relation of the results of Okounkov and Pandharipande with the quantum dispersionless KdV hierarchy, while in the orbifold case we prove triple mirror symmetry between GW theory of target P^1 orbifolds of positive Euler characteristic, singularity theory of a class of polynomials in three variables and extended affine Weyl groups of type ADE.
3

A Quantum Lefschetz Theorem without Convexity

Wang, Jun 01 October 2020 (has links)
No description available.
4

QUANTUM COHOMOLOGY OF TORIC BUNDLES / トーリック束の量子コホモロジー

Koto, Yuki 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25088号 / 理博第4995号 / 新制||理||1713(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 入谷 寛, 教授 塚本 真輝, 教授 吉川 謙一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
5

Cremona Symmetry in Gromov-Witten Theory / Cremona Symmetry in Gromov-Witten Theory

Gholampour, Amin, Karp, Dagan, Payne, Sam 25 September 2017 (has links)
We establish the existence of a symmetry within the Gromov-Witten theory of CPn and its blowup along points. The nature of this symmetry is encoded in the Cremona transform and its resolution, which lives on the toric variety of the permutohedron. This symmetry expresses some difficult to compute invariants in terms of others less difficult to compute. We focus on enumerative implications; in particular this technique yields a one line proof of the uniqueness of the rational normal curve. Our method involves a study of the toric geometry of the permutohedron, and degeneration of Gromov-Witten invariants. / En este trabajo establecemos la existencia de una simetra en el marco de la teora de Gromov-Witten para CPn y su explosion a lo largo de puntos. La naturaleza de esta simetra queda codicada en la transformacion de Cremona y su resolucion en una variedad torica del permutoedro. Esta simetra expresa algunos invariantes difciles de calcular junto con otros que no lo son tanto. Nos centramos en implicaciones enumerativas; en particular esta tecnica ofrece una prueba enuna lnea de la unicidad de la curva racional normal. Nuestro metodo involucra un estudio de la geometra torica del permutoedro, as como el de la degeneracion de los invariantes de Gromov-Witten.

Page generated in 0.0645 seconds