Spelling suggestions: "subject:"symplectic field 1heory"" "subject:"symplectic field btheory""
1 |
Construction of general symplectic field theory / 一般のsymplecic field theoryの構成Ishikawa, Suguru 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21537号 / 理博第4444号 / 新制||理||1639(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 小野 薫, 教授 向井 茂, 教授 望月 拓郎 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
2 |
Symplectic topology, mirror symmetry and integrable systems.Rossi, Paolo 21 October 2008 (has links) (PDF)
Using Sympelctic Field Theory as a computational tool, we compute Gromov-Witten theory of target curves using gluing formulas and quantum integrable systems. In the smooth case this leads to a relation of the results of Okounkov and Pandharipande with the quantum dispersionless KdV hierarchy, while in the orbifold case we prove triple mirror symmetry between GW theory of target P^1 orbifolds of positive Euler characteristic, singularity theory of a class of polynomials in three variables and extended affine Weyl groups of type ADE.
|
3 |
Algebraic Torsion in Higher-Dimensional Contact ManifoldsMoreno, Agustin 04 April 2019 (has links)
Wir konstruieren Beispiele von Kontaktmannigfaltigkeiten in jeder ungeraden Dimension, welche endliche nicht-triviale algebraische Torsion (im Sinne von Latschev-Wendl) aufweisen, somit straff sind und keine starke symplektische Füllung haben. Wir beweisen, dass Giroux Torsion
algebraische 1-Torsion in jeder ungeraden Dimension impliziert, womit eine Vermutung von Massot-Niederkrüger-Wendl bewiesen wird. Wir konstruieren unendlich viele nicht diffeomorphe Beispiele von 5-dimensionalen Kontaktmannigfaltigkeiten, welche straff sind, keine starke
symplektische Füllung zulassen und keine Giroux Torsion haben. Wir erhalten Obstruktionen für symplektische Kobordismen, ohne für deren Beweis die SFT Maschinerie zu verwenden. Wir geben eine provisorische Definition eines spinalen offenen Buchs in höherer Dimension an, basierend auf der vom 3-dimensionalen Fall aus Lisi-van Horn Morris-Wendl. In einem Anhang geben wir in gemeinsamer Autorenschaft mit Richard Siefring eine wesentliche Zusammenfassung der Schnitttheorie für punktierte holomorphe Kurven und Hyperflächen an, welche die 3-dimensionalen Resultate von Siefring auf höhere Dimensionen verallgemeinert. Mittels der Schnitttheorie erhalten wir eine Anwendung für holomorphe Blätterungen von Kodimension zwei, die wir benutzen um das Verhalten von holomorphem Kurven in unseren Beispielen einzuschränken. / We construct examples in any odd dimension of contact manifolds with finite and non-zero algebraic torsion (in the sense of Latschev-Wendl), which are therefore tight and do not admit strong symplectic fillings. We prove that Giroux torsion implies algebraic 1-torsion in any odd dimension, which proves a conjecture of Massot-Niederkrüger-Wendl. We construct infinitely many non-diffeomorphic examples of 5-dimensional contact manifolds which are tight, admit no strong fillings, and do not have Giroux torsion. We obtain obstruction results for symplectic cobordisms, for which we give a proof not relying on SFT machinery. We give a tentative definition of a higher-dimensional spinal open book decomposition, based on the 3-dimensional one of Lisi-van Horn Morris-Wendl. An appendix written in co-authorship with Richard Siefring gives a basic outline of the intersection theory for punctured holomorphic curves and hypersurfaces, which generalizes his 3-dimensional results to higher dimensions. From the intersection theory we obtain an application to codimension-2 holomorphic foliations, which we use to restrict the behaviour of holomorphic curves in our examples.
|
Page generated in 0.0433 seconds