• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Associative submanifolds of G2-manifolds

Bera, Gorapada 27 November 2023 (has links)
Die hier dargelegte Dissertation ist motiviert durch die Vorschläge von Joyce, Doan und Walpuski zur Definitionen enumerativer Invarianten für G2-Mannigfaltigkeit, durch das Zählen gewisser kalibrierter Untermannigfaltigkeiten, sogenannter assoziativen Untermannigfaltigkeiten. In Kapitel 1, werde ich Definitionen und grundlegende Fakten über G2-Mannigfaltigkeit und deren assoziative Untermannigfaltigkeit wiederholen. Darüber hinaus erläutere ich die Konstruktion von G2-Mannigfaltigkeit als verdrehte verbundener Summe. Kapitel 2 schafft die nötige Grundlage für das darauf folgende dritte Kapitel. Hier definiere ich den Modul-Raum der asymptotisch zylindrischen assoziativen Untermannigfaltigkeiten zusammen mit seiner natürlichen Topologie und zeige, dass der Modul-Raum lokal homeomorph zur Urbild-Menge der Null einer glatten Abbildung zwischen zwei endlich-dimensionalen Räu- men ist. In besonderen Fällen ist dieser Modul-Raum eine Lagrangesche Untermannigfaltigkeit des Modul Raums der holomorphen Kurven einer asymptotisch zylindrischen Calabi-Yau Man- nigfaltigkeit. In Kapitel 3 beweise ich ein Klebe-Theorem für ein Paar von asymptotisch zylindrischen as- soziativen Untermannigfaltigkeiten in einem zusammenpassenden Paar von asymptotisch zylin- drischen G2-Mannigfaltigkeiten. Hiermit konstruiere ich neue geschlossene und starre (rigid) assoziative Untermannigfaltigkeiten in verdrehten verbundenen Summe G2-Mannigfaltigkeiten. In Kapitel 4 untersuche ich den Modul-Raum der konisch singulären assoziativen Un- termannigfaltigkeiten in G2-Mannigfaltigkeiten. Durch das Umformulieren des Indexes des Operators, der die Deformationstheorie kontrolliert, in bestimmte Stabilität-Indizes des zu- grundeliegenden assoziativen Kegels begründe ich, dass in einem generischen Pfad in dem Raum der ko-geschlossenen G2-Strukturen keine asymptotisch konischen assoziative Unter- mannigfaltigkeiten existieren, die mindestens eine Singularität besitzen, die auf einem Kegel mit Stabiltätsindex größer als eins modeliert werden. Dieses Resultat lässt sich auf alle speziellen Lagrangesche-Kegel außer den Harvey-Lawson-T2-Kegel und die Vereinigung zweier speziellen Lagrangesche-Flächen anwenden. Zusätzlich lässt sich das Ergebnis auch auf alle konischen assoziativen Untermannigfaltigkeiten anwenden, deren zugrundeliegende Verschlingung (link) holomorphe Kurven mit Null-Torsion in S6 sind. Des Weiteren dienen Teile des vierten Kapitels als Grundlage für das darauf folgende Kapitel 5. Aufgrund einiger Übergangsphänomene entlang eines generischen Pfades von G2-Strukturen, führt das naive Zählen von assoziativen Untermannigfaltigkeiten zu keiner Invariante. Tat- sächlich wurde vermutet, dass a) eine assoziative Untermannigfaltigkeit aus einer assoziativen Untermannigfaltigkeit mit Selbstsschnitt (self-intersection) geboren werden kann, und, dass b) drei assoziative Untermannigfaltigkeiten aus einer konisch singulären assoziativen Un- termannigfaltigkeit, deren Singularität durch den Harvey-Lawson-T2-Kegel modelliert wird, entspringen. In Kapitel 5, beweise ich ein Desingularitätstheorem für konisch singulären assoziative Untermannigfaltigkeit entlang eines Pfades von ko-geschlossenen G2-Strukturen. Somit verifiziere ich Vermutung b) bewiesen und teilweise auch Vermutung a). / The dissertation presented here is motivated from the proposals made by Joyce, Doan and Walpuski to define enumerative invariants of G2-manifolds by counting certain calibrated submanifolds, called associative submanifolds. In Chapter 1, I review the definitions and basic facts of G2-manifolds and associative submanifolds. Moreover, I explain the construction of G2-manifolds as twisted connected sums. Chapter 2 serves as a necessary groundwork for Chapter 3. Here, I define the moduli space of asymptotically cylindrical associative submanifolds with its natural topology and prove that the moduli space is locally homeomorphic to the zero set of a smooth map between two finite-dimensional spaces. In the best scenario, this moduli space is a Lagrangian submanifold of the moduli space of holomorphic curves in the asymptotic Calabi-Yau 3-fold. In Chapter 3, I prove a gluing theorem for a pair of asymptotically cylindrical associative submanifolds in a matching pair of asymptotically cylindrical G2-manifolds. Using this I construct new closed and rigid associative submanifolds of twisted connected sum G2-manifolds. In Chapter 4, I study the moduli space of conically singular associative submanifolds in G2-manifolds. By reformulating the index of the operator that controls the deformation theory in terms of certain stability-index of the associative cones, I establish that in a generic path of co-closed G2-structures there are no conically singular associative submanifolds that have at least one singularity modeled on a cone of stability-index greater than one. This result applies to all special Lagrangian cones, except the Harvey-Lawson T2-cone and a union of two special Lagrangian planes. Additionally, it applies to all associative cones whose links are null-torsion holomorphic curves in S6. Furthermore, parts of Chapter 4 also serve as a necessary groundwork for Chapter 5. The naive counting of associative submanifolds does not lead to an invariant due to several transitions that may occur along a generic path of G2-structures. In fact it was conjectured that a) an associative submanifold born out of an associative submanifold with self intersection, and b) three associative submanifolds arise from a conically singular associative submanifold whose singularity is modeled on Harvey-Lawson T2-cone. In Chapter 5, I prove a desingularization theorem for conically singular associative submanifolds along a path of co-closed G2-structures. Consequently, I verify conjecture b) and partially confirm conjecture a).
2

Algebraic Torsion in Higher-Dimensional Contact Manifolds

Moreno, Agustin 04 April 2019 (has links)
Wir konstruieren Beispiele von Kontaktmannigfaltigkeiten in jeder ungeraden Dimension, welche endliche nicht-triviale algebraische Torsion (im Sinne von Latschev-Wendl) aufweisen, somit straff sind und keine starke symplektische Füllung haben. Wir beweisen, dass Giroux Torsion algebraische 1-Torsion in jeder ungeraden Dimension impliziert, womit eine Vermutung von Massot-Niederkrüger-Wendl bewiesen wird. Wir konstruieren unendlich viele nicht diffeomorphe Beispiele von 5-dimensionalen Kontaktmannigfaltigkeiten, welche straff sind, keine starke symplektische Füllung zulassen und keine Giroux Torsion haben. Wir erhalten Obstruktionen für symplektische Kobordismen, ohne für deren Beweis die SFT Maschinerie zu verwenden. Wir geben eine provisorische Definition eines spinalen offenen Buchs in höherer Dimension an, basierend auf der vom 3-dimensionalen Fall aus Lisi-van Horn Morris-Wendl. In einem Anhang geben wir in gemeinsamer Autorenschaft mit Richard Siefring eine wesentliche Zusammenfassung der Schnitttheorie für punktierte holomorphe Kurven und Hyperflächen an, welche die 3-dimensionalen Resultate von Siefring auf höhere Dimensionen verallgemeinert. Mittels der Schnitttheorie erhalten wir eine Anwendung für holomorphe Blätterungen von Kodimension zwei, die wir benutzen um das Verhalten von holomorphem Kurven in unseren Beispielen einzuschränken. / We construct examples in any odd dimension of contact manifolds with finite and non-zero algebraic torsion (in the sense of Latschev-Wendl), which are therefore tight and do not admit strong symplectic fillings. We prove that Giroux torsion implies algebraic 1-torsion in any odd dimension, which proves a conjecture of Massot-Niederkrüger-Wendl. We construct infinitely many non-diffeomorphic examples of 5-dimensional contact manifolds which are tight, admit no strong fillings, and do not have Giroux torsion. We obtain obstruction results for symplectic cobordisms, for which we give a proof not relying on SFT machinery. We give a tentative definition of a higher-dimensional spinal open book decomposition, based on the 3-dimensional one of Lisi-van Horn Morris-Wendl. An appendix written in co-authorship with Richard Siefring gives a basic outline of the intersection theory for punctured holomorphic curves and hypersurfaces, which generalizes his 3-dimensional results to higher dimensions. From the intersection theory we obtain an application to codimension-2 holomorphic foliations, which we use to restrict the behaviour of holomorphic curves in our examples.
3

Geraden in komplexen Mannigfaltigkeiten

Radtke, Achim 09 November 2001 (has links)
Gegenstand dieser Arbeit sind Geraden in komplexen Mannigfaltigkeiten. Dabei wird zum einen ein Geradenbegriff verwendet, der sich aus der Theorie der Twistorräume herleitet. Demnach ist eine Gerade in einer n-dimensionalen Mannigfaltigkeit eine rationale Kurve, deren Normalenbündel isomorph zu dem Normalenbündel einer Geraden im n-dimensionalen komplexen projektiven Raum ist. Einen engeren Geradenbegriff erhält man, wenn man darüberhinaus fordert, dass eine Umgebung der Kurve isomorph zu einer Umgebung einer Geraden im projektiven Raum ist. Solche Geraden heissen tubular. In der Arbeit wird gezeigt, dass die beiden Geradenbegriffe nicht äquivalent sind und ein Kriterium dafür angegeben, wann eine Gerade nicht tubular ist. Mit der Deformationstheorie folgt aus der Existenz einer Geraden in einer Mannigfaltigkeit die Existenz einer Familie von Geraden, wobei die Geraden eine offene Menge überdecken. Daher gibt es auf solchen Mannigfaltigkeiten keine holomorphen Differentialformen und somit sind die meisten Methoden der Klassifikationstheorie nicht anwendbar. Als einziger Zugang bleibt die algebraische Reduktion, die in dieser Arbeit für dreidimensionale Mannigfaltigkeiten mit Geraden untersucht wird, wobei sich zunächst eine grobe Charakterisierung dieser Räume ergibt. Der Fall der algebraischen Dimension 2 erweisst sich dann als besonders günstig, da solche Mannigfaltigkeiten elliptische Faserungen über komplexen Flächen sind und die Existenz der Geraden impliziert, dass diese Flächen rational sind. Elliptische Hauptfaserbündel mit Geraden können dann vollständig beschrieben werden. Allgemeine Faserungen lassen sich auf Faserungen über Hirzebruch-Flächen zurückführen. Für diese werden notwendige Bedingungen an die Existenz von Geraden hergeleitet. / In this work we study lines in complex manifolds. Mostly we use a definition of lines which comes from the thory of twistor spaces. That means a line is a rational curve in a complex manifold with the same normal bundle as a line in a projective space. Another possibility for the definition of lines is to demand that a complete neighbourhood of the rational curve is biholomorphic equivalent to a neighbourhood of a line in a projective space. Such lines a called tubular lines. In this work we show that these two definitions of lines are not equivalent and we give a criterion for a line not to be tubular. From deformation theory follows that the existence of a line in a manifold induces a family of lines which covers an open subset. Therefore there are no non-trivial homolorphic differential forms on the manifold and most of the techniques of classification theory do not work. Therefore we study the algebraic reduction of the manifold. For 3 dimensional complex manifolds with lines we get a rough description. In the case of algebraic dimension 2 the algebraic reduction is an elliptic fibration over a surface and from the existence of lines we can conclude that this surface is rational. For such fibrations we have good descriptions and we can generalize the situation to fibrations over minimal rational surfaces. For them we give necessary condtions for the exitence of lines.
4

Geometric constructions and structures associated with twistor spinors on pseudo-Riemannian conformal manifolds

Lischewski, Andree 16 February 2015 (has links)
Die Arbeit untersucht lokale Geometrien, die Twistorspinoren zulassen auf pseudo-Riemannschen Mannigfaltigkeiten beliebiger Signatur. Hierzu entwickeln wir die benötigten Methoden, nämlich das konforme Traktorkalkül, welches eine konform-invariante Beschreibung von Twistorspinoren als parallele Objekte ermöglicht, weiter. In diesem Zusammenhang ist unser erstes zentrales Resultat ein Klassifikationssatz für konforme Strukturen, deren Holonomiegruppen einen total ausgearteten Unterraum beliebiger Dimension invariant lassen. Hierauf aufbauend können wir einen partiellen Klassifikationssatz für konforme Strukturen mit Twistorspinoren beweisen. Weiterhin studieren wir die Nullstellenmenge eines Twistorspinors unter Nutzung der Theorie der Orbitzerlegungen für parabolische Geometrien. Wir können die lokale geometrische Struktur der Nullstellenmenge vollständig beschreiben und zeigen, dass lokal jeder Twistorspinor mit Nullstelle konform äquivalent zu einem parallelem Spinor ist. Eine Anwendung dieser Resultate auf niedrig-dimensionale Split-Signaturen führt zu einer vollständigen geometrischen Beschreibung von Mannigfaltigkeiten mit nicht-generischen Twistorspinoren in den Signaturen (3,2) und (3,3) durch parallele Spinoren, was die schon bekannte Analyse des generischen Falls komplementiert. Darüberhinaus wenden wir das Traktorkalkül an, um einer konformen Spin- Mannigfaltigkeit auf natürliche Weise eine konforme Superalgebra zuzuordnen. Dieser Zugang führt zu verschiedenen Resultaten, die algebraische Eigenschaften dieser Superalgebra mit speziellen Geometrien auf der zugrundeliegenden Mannigfaltigkeit in Verbindung bringen. Weiterhin erhält man so neue Konstruktionsprinzipien für Twistorspinoren und konforme Killingformen. Zuletzt führen wir den Begriff der konformen Spin-c-Geometrie ein. Unter anderem liefern spezielle Spin-c-Twistorspinoren eine neue Charakterisierung von Fefferman-Räumen. / The present thesis studies local geometries admitting twistor spinors on pseudo- Riemannian manifolds of arbitrary signature. To this end, we refine and extend the necessary machinery of first prolongation of conformal structures and conformal tractor calculus which allows a conformally-invariant description of twistor spinors as parallel objects. In this context, our first main theorem is a classification result for conformal geometries whose conformal holonomy group admits a totally degenerate invariant subspace of arbitrary dimension. Based on this we are able to prove a partial classification result for conformal structures admitting twistor spinors. Moreover, we study the zero set of a twistor spinor using the theory of curved orbit decompositions for parabolic geometries. We can completely describe the local geometric structure of the zero set and show that locally every twistor spinor with zero is equivalent to a parallel spinor off the zero set. An application of these results in low-dimensional split-signatures leads to a complete geometric description of manifolds admitting non-generic twistor spinors in signatures (3,2) and (3,3) in terms of parallel spinors which complements the well-known analysis of the generic case. Moreover, we apply tractor calculus for the construction of a conformal superalgebra naturally associated to a conformal spin structure. This approach leads to various results linking algebraic properties of the superalgebra to special geometric structures on the underlying manifold. It also exhibits new construction principles for twistor spinors and conformal Killing forms. Finally, we introduce and elaborate on the notion of conformal Spin-c-geometry. Among other aspects, this gives rise to a new characterization of Fefferman spaces in terms of distinguished Spin-c-twistor spinors.
5

Rabinowitz-Floer homology on Brieskorn manifolds

Fauck, Alexander 19 May 2016 (has links)
In dieser Dissertation werden Kontaktstrukturen auf beliebigen differenzierbaren Mannigfaltigkeiten ungerader Dimension untersucht. Dies geschiet vermöge der Rabinowitz-Floer-Homologie (RFH), welche 2009 von Cieliebak und Frauenfelder eingeführt wurde. Ein großer Teil der Arbeit widmet sich den technischen Problemen bei der Definition von RFH. Insbesondere wird die Transversalität für die benötigten Modulräume gezeigt. In einem weiteren Abschnitt wird bewiesen, dass RFH im wesentlichen invariant unter subkrittischer Henkelanklebung ist. Schließlich enthält die Arbeit die Berechnung von RFH für einige Brieskorn-Mannigfaltigkeiten. Die dabei gewonnenen Resultate werden dazu verwendet zu zeigen, dass es auf jeder Mannigfaltigkeit, welche füllbare Kontaktstukturen zulässt, entweder unendlich viele verschiedene füllbare Kontaktstrukturen gibt, oder eine Kontaktstruktur mit unendlich vielen verschiedenen Füllungen oder das für alle füllbaren Kontaktstrukturen die RFH von unendlicher Dimension ist für alle Grade. / This thesis considers fillable contact structures on odd-dimensional manifolds. For that purpose, Rabinowitz-Floer homology (RFH) is used which was introduced by Cieliebak and Frauenfelder in 2009. A major part of the thesis is devoted to technical problems in the definition of RFH. In particular, it is shown that the moduli spaces involved are cut out transversally. Moreover, it is proved that RFH is essentially invariant under subcritical handle attachment. Finally, RFH is calculated for some Brieskorn manifolds. The obtained results are then used to show for every manifold, which supports fillable contact structures, that there exist either infinitely many different fillable contact structures, or one contact structure with infinitely many different fillings or for every fillable contact structure holds that RFH is infinite dimensional in every degree.
6

A regularized arithmetic Riemann-Roch theorem via metric degeneration

De Gaetano, Giovanni 14 June 2018 (has links)
Das Hauptresultat dieser Arbeit ist ein regularisierter arithmetischer Satz von Riemann-Roch für ein hermitesches Geradenbündel, die isometrisch zum Geradenbündel den Spitzenformen vom geraden Gewicht ist, auf eine arithmetische Fläche, deren komplexe Faser isometrisch zu einer hyperbolischen Riemannschen Fläche ohne elliptische Punkte ist. Der Beweis des Resultats erfolgt durch metrische Degeneration: Wir regularisieren die betreffenden Metriken in einer Umgebung der Singularitäten, wenden dann den arithmetischen Riemann-Roch-Satz von Gillet und Soulé an und lassen schließlich den Parameter gegen Null gehen. Durch die metrische Degeneration entsteht auf beiden Seiten der Formel ein divergenter Term. Die asymptotische Entwicklung der Divergenz berechnet sich auf der einen Seite direkt aus der Definition der glatten arithmetischen Selbstschnittzahlen. Der divergente Term auf der anderen Seite ist die zeta-regularisierte Determinante des zu den regularisierten Metriken assoziierten Laplace-Operators, der auf den 1-Formen mit Werten in dem betrachteten hermitischen Geradenbündel operiert. Wir definieren und berechnen zuerst eine Regularisiereung des entsprechenden zu den singulären Metriken assoziierten Laplace-Operators; diese wird später im regularisierten Riemann-Roch-Satz auftauchen. Zu diesem Zweck passen wir Ideen von Jorgenson-Lundelius, D'Hoker-Phong und Sarnak auf die vorliegende Situation an und verallgemeinern diese. Schließlich beweisen wir eine Formel für den zum betrachteten hermitischen Geradenbündel assoziierten Wärmeleitungskern auf der Diagonalen bei einer Modellspitze. Diese Darstellung steht im Zusammenhang mit einer Entwicklung nach zur Whittaker-Gleichung assoziierten Eigenfunktionen, die im Anhang bewiesen wird. Weitere Abschätzungen des zum betrachteten hermitischen Geradenbündel gehörigen Wärmeleitungskern auf der komplexe Faser der arithmetischen Fläche schließen den Beweis des Hauptresultats ab. / The main result of the dissertation is an arithmetic Riemann-Roch theorem for the hermitian line bundle of cusp form of given even integer weights on an arithmetic surface whose complex fiber is isometric to an hyperbolic Riemann surface without elliptic points. The proof proceeds by metric degeneration: We regularize the metric under consideration in a neighborhood of the singularities, then we apply the arithmetic Riemann-Roch theorem of Gillet and Soulé, and finally we let the parameter go to zero. Both sides of the formula blow up through metric degeneration. On one side the exact asymptotic expansion is computed from the definition of the smooth arithmetic intersection numbers. The divergent term on the other side is the zeta-regularized determinant of the Laplacian acting on 1-forms with values in the chosen hermitian line bundle associated to the regularized metrics. We first define and compute a regularization of the determinant of the corresponding Laplacian associated to the singular metrics, which will later occur int he regularized arithmetic Riemann-Roch theorem. To do so we adapt and generalize ideas od Jorgenson-Lundelius, D'Hoker-Phong, and Sarnak. Then, we prove a formula for the on-diagonal heat kernel associated to the chosen hermitian line bundle on a model cusp, from which its behavior close to a cusp is transparent. This expression is related to an expansion in terms of eigenfunctions associated to the Whittaker equation, which we prove in an appendix. Further estimates on the heat kernel associated to the chosen hermitian line bundle on the complex fiber of the arithmetic surface prove the main theorem.
7

Coassociative submanifolds and G2-instantons in Joyce’s generalised Kummer constructions

Gutwein, Dominik 24 October 2024 (has links)
In dieser Dissertation konstruieren wir neue Beispiele von koassoziativen Untermannigfaltigkeiten und G2-Instantonen in kompakten G2-Mannigfaltigkeiten, die aus Joyces verallgemeinerter Kummer Konstruktion hervorgehen. Die besondere Eigenschaft der in dieser Arbeit gefundenen koassoziativen Untermannigfaltigkeiten ist, dass ihr (topologisch bestimmtes) Volumen gegen Null geht, wenn die umgebende Mannigfaltigkeit sich ihrem Orbifaltigkeits-Limes annähert. Dies ist im Sinne eines Vorschlags von Halverson und Morrison, der darauf hinweist, dass bestimmte Entartungen (oder, allgemeiner, die Perioden) von G2-Strukturen durch das Verhalten von G2-topologischen Größen wie dem Volumen von assoziativen und koassoziativen Untermannigfaltigkeiten nachweisbar sein könnten. Die Konstruktion dieser koassoziativen Untermannigfaltigkeiten ist Inhalt von Kapitel 3 und basiert auf der Deformation von „Modell-Untermannigfaltigkeiten“. Diese Untermannigfaltigkeiten liegen innerhalb des kritischen Bereiches der umgebenden Mannigfaltigkeit, in welchem die Metrik entartet. Abschnitt 3.3 beinhaltet zahlreiche Beispiele von koassoziativen Untermannigfaltigkeiten, die wir durch diese Methode konstruieren. Des Weiteren beschreiben wir die Deformationsfamilie dieser koassoziativen Untermannigfaltigkeiten. In Kapitel 4 konstruieren wir neue Beispiele von G2-Instantonen über verallgemeinerten Kummer Konstruktionen. Wir konzentrieren uns hierbei hauptsächlich auf Auflösungen von Orbifaltigkeiten, deren singuläre Strata von Kodimension 6 sind. Wie im vorherigen Kapitel basiert die Konstruktion dieser Instantonen auf einem Klebesatz, welcher einen Zusammenhang deformiert, der (im quantifizierten Sinne) fast ein G2-Instanton ist. Außerdem benutzen wir Gruppenwirkungen um die Obstruktionen zu reduzieren. Mithilfe dieser Methode konstruieren wir in Abschnitt 4.4 eine unendliche Familie von G2-Instantonen auf einem Bündel über einer bestimmten Kummer Konstruktion. / In this thesis we construct new examples of coassociative submanifolds and G2-instantons in compact G2-manifolds arising from Joyce’s generalised Kummer construction. The special feature of the coassociative submanifolds found in this thesis is that their (topologically determined) volume shrinks to zero as the ambient manifold approaches its orbifold limit. This is in the spirit of a proposal by Halverson and Morrison which indicates that certain degenerations (or, more general, the periods) of G2-structures may be detectable by the behaviour of G2-topological quantities such as the volume of associative and coassociative submanifolds. The construction of these coassociative submanifolds is the content of Chapter 3. It is based on the deformation of ‘model-submanfiolds’. These submanifolds lie within the critical locus of the ambient manifold in which the metric degenerates. Section 3.3 contains numerous examples of coassociative submanifolds which we construct via this method. Furthermore, we give a description of the deformation family of these coassociative submanifolds. In Chapter 4 we construct new examples of G2-instantons over generalised Kummer constructions. We focus mainly on resolutions of orbifolds whose singular strata are of codimension 6. As in the previous chapter, the construction of these instantons is based on a gluing theorem which deforms a connection that is (in a quantified sense) close to being a G2-instanton. Furthermore, we use group actions to reduce the obstructions. Using this method, we construct in Section 4.4 an infinite family of G2-instantons on a bundle over one particular Kummer construction.
8

Conformally covariant differential operators acting on spinor bundles and related conformal covariants

Fischmann, Matthias 27 March 2013 (has links)
Konforme Potenzen des Dirac Operators einer semi Riemannschen Spin-Mannigfaltigkeit werden untersucht. Wir präsentieren einen neuen Beweis, basierend auf dem Traktor Kalkül, für die Existenz von konformen ungeraden Potenzen des Dirac Operators auf semi Riemannschen Spin-Mannigfaltigkeiten. Desweiteren konstruieren wir eine neue Familie von konform kovarianten linearen Differentialoperatoren auf dem standard spin Traktor Bündel. Weiterhin verallgemeinern wir den Existenzbeweis für konforme ungerade Potenzen des Dirac Operators auf semi Riemannsche Spin-Mannigfaltigkeiten. Da die Existenzbeweise konstruktive sind, erhalten wir explizite Formeln für die konforme dritte und fünfte Potenz des Dirac Operators. Basierend auf den expliziten Formeln zeigen wir, dass die konforme dritte und fünfte Potenz des Dirac Operators formal selbstadjungiert (anti selbstadjungiert) bezüglich des L2-Skalarproduktes auf dem Spinorbündel ist. Abschliessend präsentieren wir neue Strukturen der konformen ersten, dritten und fünften Potenz des Dirac Operators: Es existieren lineare Differentialoperatoren auf dem Spinorbündel der Ordnung kleiner gleich eins, so dass die konforme erste, dritte und fünfte Potenz des Dirac Operators ein Polynom in jenen Operatoren ist. / Conformal powers of the Dirac operator on semi Riemannian spin manifolds are investigated. We give a new proof of the existence of conformal odd powers of the Dirac operator on semi Riemannian spin manifolds using the tractor machinery. We will also present a new family of conformally covariant linear differential operators on the standard spin tractor bundle. Furthermore, we generalize the known existence proof of conformal power of the Dirac operator on Riemannian spin manifolds to semi Riemannian spin manifolds. Both proofs concering the existence of conformal odd powers of the Dirac operator are constructive, hence we also derive an explicit formula for a conformal third- and fifth power of the Dirac operator. Due to explicit formulas, we show that the conformal third- and fifth power of the Dirac operator is formally self-adjoint (anti self-adjoint), with respect to the L2-scalar product on the spinor bundle. Finally, we present a new structure of the conformal first-, third- and fifth power of the Dirac operator: There exist linear differential operators on the spinor bundle of order less or equal one, such that the conformal first-, third- and fifth power of the Dirac operator is a polynomial in these operators.
9

Boundary constructions for CR manifolds and Fefferman spaces

Fehlinger, Luise 25 August 2014 (has links)
In dieser Dissertation werden Cartan-Ränder von CR-Mannigfaltigkeiten und ihren Fefferman-Räumen besprochen. Der Fefferman-Raum einer strikt pseudo-konvexen CR-Mannigfaltigkeit ist als das Bündel aller reellen Strahlen im kanonischen, komplexen Linienbündel definiert. Eine andere Definition nutzt die Cartan-Geometrie und führt zu einer starken Beziehung zwischen den Cartan-Geometrien der CR-Mannigfaltigkeit und des zugehörigen Fefferman-Raumes. Allerdings wird hier die Existenz einer gewissen Wurzel des antikanonischen, komplexen Linienbündels, dessen Existenz nur lokal gesichert ist, vorausgesetzt. Für Randkonstruktionen benötigen wir jedoch eine globale Konstruktion des Fefferman-Raumes. Dennoch können lokale Resultate zum Fefferman-Raum von einer Konstruktion zur anderen übertragen werden können, da konforme Überlagerungen von beiden vorliegen. Der Cartan-Rand einer Mannigfaltigkeit wird mithilfe der zugehörigen Cartan-Geometrie konstruiert, welche eine globale Basis und damit auch eine Riemannsche Metrik auf dem Cartan-Bündel definiert, welches per Cauchy-Vervollständigung abgeschlossen wird. Division durch die Strukturgruppe ergibt den Cartan-Rand der Mannigfaltigkeit. Der Cartan-Rand ist eine Verallgemeinerung des Cauchy-Randes, da beide im Riemannschen übereinstimmen. Allgemein ist der Cartan-Rand nicht unbedingt Hausdorffsch, was nicht wirklich überrascht, sind doch Rand-Phänomene "irgendwie singulär". Wir stellen fest, dass für CR-Mannigfaltigkeit und ihre Fefferman-Räume die Projektion des Cartan-Randes des Fefferman-Raumes den Cartan-Rand der CR-Mannigfaltigkeit enthält. Schließlich betrachten wir die Heisenberg-Gruppe, eines der grundlegenden Beispiele für CR-Mannigfaltigkeiten. Sie ist flach aber - anders als der homogene Raum - nicht kompakt. Wir finden, dass der Cartan-Rand der Heisenberg-Gruppe ein einzelner Punkt und der Cartan-Rand des zugehörigen Fefferman-Raumes eine nicht-ausgeartete Faser über diesem ist. / The aim of this thesis is to discuss the Cartan boundaries of CR manifolds and their Fefferman spaces. The Fefferman space of a strictly pseudo-convex CR manifold is defined as the bundle of all real rays in the canonical complex line bundle. Another way of defining the Fefferman space of a CR manifold uses the tools of Cartan geometry and leads to a strong relationship between the Cartan geometries of a CR manifold and the corresponding Fefferman space. However here the existence of a certain root of the anticanonical complex line bundle is requested which can solely be guarantied locally. As we are interested in boundaries we need a global construction of the Fefferman space. Still we find that local results on the Fefferman space can be transferred from one construction to the other since we have conformal coverings of both. The Cartan boundary of a manifold is constructed with the help of the corresponding Cartan geometry, which defines a global frame and hence a Riemannian metric on the Cartan bundle which can be completed by Cauchy completion. Division by the structure group gives the Cartan boundary of the manifold. The Cartan boundary is a generalization of the Cauchy boundary since both coincide in the Riemannian case. In general the Cartan boundary is not necessarily Hausdorff, which is not really surprising since boundary phenomena are somehow ``singular''''. For CR manifolds and their Fefferman spaces we especially prove that the projection of the Cartan boundary of the Fefferman space contains the Cartan boundary of the CR manifold. We finally discuss the Heisenberg group, one of the basic examples of CR manifolds. It is flat but - contrary to the homogeneous space - not compact. We find that the Cartan boundary of the Heisenberg group is a single point and the Cartan boundary of the corresponding Fefferman space is a non degenerate fibre over that point.

Page generated in 0.0319 seconds