• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invariante Deformationsquantisierung und Quantenimpulsabbildungen

Müller-Bahns, Michael Frank. January 2004 (has links) (PDF)
Mannheim, Univ., Diss., 2004. / Erscheinungsjahr an der Haupttitelstelle: 2003. Computerdatei im Fernzugriff.
2

Invariante Deformationsquantisierung und Quantenimpulsabbildungen

Müller-Bahns, Michael Frank. January 2004 (has links) (PDF)
Mannheim, Universiẗat, Diss., 2004. / Erscheinungsjahr an der Haupttitelstelle: 2003.
3

Explicit symplectic packings symplectic tunnelling and new maximal constructions

Wieck, Ingo Andreas January 2008 (has links)
Zugl.: Köln, Univ., Diss., 2008
4

Constraint Reduction in Algebra, Geometry and Deformation Theory / Constraint Reduktion in Algebra, Geometrie und Deformationsquantisierung

Dippell, Marvin January 2023 (has links) (PDF)
To study coisotropic reduction in the context of deformation quantization we introduce constraint manifolds and constraint algebras as the basic objects encoding the additional information needed to define a reduction. General properties of various categories of constraint objects and their compatiblity with reduction are examined. A constraint Serre-Swan theorem, identifying constraint vector bundles with certain finitely generated projective constraint modules, as well as a constraint symbol calculus are proved. After developing the general deformation theory of constraint algebras, including constraint Hochschild cohomology and constraint differential graded Lie algebras, the second constraint Hochschild cohomology for the constraint algebra of functions on a constraint flat space is computed. / Um koisotrope Reduktion im Kontext der Deformationsquantisierung zu betrachten, werden constraint Mannigfaltigkeiten und constraint Algebren als grundlegende Objekte definiert. Wichtige Eigenschaften verschiedener zugehöriger Kategorien, sowie deren Kompatibilität mit Reduktion werden untersucht. In Analogie zum klassischen Serre-Swan-Theorem können constraint Vektorbündel mit bestimmten endlich erzeugt projektiven constraint Moduln identifiziert werden. Außerdem wird ein Symbolkalkül für constraint Multidifferenzialoperatoren eingeführt. Nach der Entwicklung der allgemeinen Deformationstheorie von constraint Algebren mithilfe von constraint Hochschild Kohomologie und constraint differentiell gradierten Lie-Algebren, wird die zweite constraint Hochschild Kohomologie im Fall eines endlich dimensionalen constraint Vektorraums berechnet.
5

On the monodromy of 4-dimensional lagrangian fibrations

Thier, Christian. January 2008 (has links)
Freiburg i. Br., Univ., Diss., 2008.
6

Invariante Deformationsquantisierung und Quantenimpulsabbildungen

Müller-Bahns, Michael. January 2003 (has links)
Mannheim, Univ., Diss., 2004.
7

Towards Discretization by Piecewise Pseudoholomorphic Curves / Zur Diskretisierung durch stückweise pseudoholomorphe Kurven

Bauer, David 27 January 2014 (has links) (PDF)
This thesis comprises the study of two moduli spaces of piecewise J-holomorphic curves. The main scheme is to consider a subdivision of the 2-sphere into a collection of small domains and to study collections of J-holomorphic maps into a symplectic manifold. These maps are coupled by Lagrangian boundary conditions. The work can be seen as finding a 2-dimensional analogue of the finite-dimensional path space approximation by piecewise geodesics on a Riemannian manifold (Q,g). For a nice class of target manifolds we consider tangent bundles of Riemannian manifolds and symplectizations of unit tangent bundles. Via polarization they provide a rich set of Lagrangians which can be used to define appropriate boundary value problems for the J-holomorphic pieces. The work focuses on existence theory as a pre-stage to global questions such as combinatorial refinement and the quality of the approximation. The first moduli space of lifted type is defined on a triangulation of the 2-sphere and consists of disks in the tangent bundle whose boundary projects onto geodesic triangles. The second moduli space of punctured type is defined on a circle packing domain and consists of boundary punctured disks in the symplectization of the unit tangent bundle. Their boundary components map into single fibers and at punctures the disks converge to geodesics. The coupling boundary conditions are chosen such that the piecewise problem always is Fredholm of index zero and both moduli spaces only depend on discrete data. For both spaces existence results are established for the J-holomorphic pieces which hold true on a small scale. Each proof employs a version of the implicit function theorem in a different setting. Here the argument for the moduli space of punctured type is more subtle. It rests on a connection to tropical geometry discovered by T. Ekholm for 1-jet spaces. The boundary punctured disks are constructed in the vicinity of explicit Morse flow trees which correspond to the limiting objects under degeneration of the boundary condition.
8

Rabinowitz-Floer homology on Brieskorn manifolds

Fauck, Alexander 19 May 2016 (has links)
In dieser Dissertation werden Kontaktstrukturen auf beliebigen differenzierbaren Mannigfaltigkeiten ungerader Dimension untersucht. Dies geschiet vermöge der Rabinowitz-Floer-Homologie (RFH), welche 2009 von Cieliebak und Frauenfelder eingeführt wurde. Ein großer Teil der Arbeit widmet sich den technischen Problemen bei der Definition von RFH. Insbesondere wird die Transversalität für die benötigten Modulräume gezeigt. In einem weiteren Abschnitt wird bewiesen, dass RFH im wesentlichen invariant unter subkrittischer Henkelanklebung ist. Schließlich enthält die Arbeit die Berechnung von RFH für einige Brieskorn-Mannigfaltigkeiten. Die dabei gewonnenen Resultate werden dazu verwendet zu zeigen, dass es auf jeder Mannigfaltigkeit, welche füllbare Kontaktstukturen zulässt, entweder unendlich viele verschiedene füllbare Kontaktstrukturen gibt, oder eine Kontaktstruktur mit unendlich vielen verschiedenen Füllungen oder das für alle füllbaren Kontaktstrukturen die RFH von unendlicher Dimension ist für alle Grade. / This thesis considers fillable contact structures on odd-dimensional manifolds. For that purpose, Rabinowitz-Floer homology (RFH) is used which was introduced by Cieliebak and Frauenfelder in 2009. A major part of the thesis is devoted to technical problems in the definition of RFH. In particular, it is shown that the moduli spaces involved are cut out transversally. Moreover, it is proved that RFH is essentially invariant under subcritical handle attachment. Finally, RFH is calculated for some Brieskorn manifolds. The obtained results are then used to show for every manifold, which supports fillable contact structures, that there exist either infinitely many different fillable contact structures, or one contact structure with infinitely many different fillings or for every fillable contact structure holds that RFH is infinite dimensional in every degree.
9

Towards Discretization by Piecewise Pseudoholomorphic Curves

Bauer, David 04 December 2013 (has links)
This thesis comprises the study of two moduli spaces of piecewise J-holomorphic curves. The main scheme is to consider a subdivision of the 2-sphere into a collection of small domains and to study collections of J-holomorphic maps into a symplectic manifold. These maps are coupled by Lagrangian boundary conditions. The work can be seen as finding a 2-dimensional analogue of the finite-dimensional path space approximation by piecewise geodesics on a Riemannian manifold (Q,g). For a nice class of target manifolds we consider tangent bundles of Riemannian manifolds and symplectizations of unit tangent bundles. Via polarization they provide a rich set of Lagrangians which can be used to define appropriate boundary value problems for the J-holomorphic pieces. The work focuses on existence theory as a pre-stage to global questions such as combinatorial refinement and the quality of the approximation. The first moduli space of lifted type is defined on a triangulation of the 2-sphere and consists of disks in the tangent bundle whose boundary projects onto geodesic triangles. The second moduli space of punctured type is defined on a circle packing domain and consists of boundary punctured disks in the symplectization of the unit tangent bundle. Their boundary components map into single fibers and at punctures the disks converge to geodesics. The coupling boundary conditions are chosen such that the piecewise problem always is Fredholm of index zero and both moduli spaces only depend on discrete data. For both spaces existence results are established for the J-holomorphic pieces which hold true on a small scale. Each proof employs a version of the implicit function theorem in a different setting. Here the argument for the moduli space of punctured type is more subtle. It rests on a connection to tropical geometry discovered by T. Ekholm for 1-jet spaces. The boundary punctured disks are constructed in the vicinity of explicit Morse flow trees which correspond to the limiting objects under degeneration of the boundary condition.

Page generated in 0.1305 seconds