• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Apie trečios eilės liestinių sluoksniuočių geometriją / About the tangent bundle geometry order 3

Mickutė, Laura 23 June 2005 (has links)
In this work is analysed the tangent bundle geometry order 3. Those bundles are defined like 3 - jet space. Co - ordinates transformation formulas of those bundles are received, how the object of linear connection inducted affine connections is demonstrated. In this work the theorem how the object of linear connection of tangent bundle inducted linear connection of tangent bundle order 3 is proved.
2

Euklido erdvės liečiamojo pluošto hiperpaviršių struktūra ir geometrinė prasmė / Structure and geometric meaning of hypersurfaces in tangent bundle of euclidean space

Kravčenkaitė, Deimantė 02 July 2012 (has links)
Šis darbas pratęsia 2010 m. autorės atlikto bakalauro darbo „Elipsinio tipo B-erdvių beveik kontaktiniai metriniai hiperpaviršiai“ tyrinėjimus, apibendrina šio darbo rezultatus kitų tipų ir rūšių -struktūroms ir pritaiko juos liečiamųjų sluoksniuočių paviršių teorijoje. / In the work, the generalized (φ, ξ, η, g)-structures in normalized hypersurfaces M2n-1 T(En) are found and its properties are investigated. Geometric meaning in basis En of some interesting hypersurfaces (hypersphere, hyperplane, hypercone,…) is explained.
3

The existence of infinitely many closed geodesics on a riemannian manifold, containing an isolated prime closed geodesic with maximal index growth

Hasselberger, Hannes 20 October 2017 (has links)
There are two main approaches to solve the problem of finding closed geodesics on a Riemannian manifold M. The variational approach views a closed geodesic as a closed curve which happens to be a geodesic and it looks for critical points of the energy functional, while the dynamical systems approach views a closed geodesic as a geodesic which happens to close up and looks for periodic orbits of the geodesic ow on the unit tangent bundle.
4

Conformal Vector Fields With Respect To The Sasaki Metric Tensor Field

Simsir, Muazzez Fatma 01 January 2005 (has links) (PDF)
On the tangent bundle of a Riemannian manifold the most natural choice of metric tensor field is the Sasaki metric. This immediately brings up the question of infinitesimal symmetries associated with the inherent geometry of the tangent bundle arising from the Sasaki metric. The elucidation of the form and the classification of the Killing vector fields have already been effected by the Japanese school of Riemannian geometry in the sixties. In this thesis we shall take up the conformal vector fields of the Sasaki metric with the help of relatively advanced techniques.
5

Existência de conexões versus módulos projetivos

Silva, Rafael Barbosa da 03 May 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:16Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 578974 bytes, checksum: e512f47deae8cd03667ae8e7c2143b34 (MD5) Previous issue date: 2013-05-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The notions of connection and covariant derivative has its origin in the field of Riemannian geometry , where there is no distinction between them. In fact, in this study we found that these notions are equivalent if we consider modules over K-algebras of finite type. We also show that the existence of connections implies the existence of covariant derivative. The main goal of this study is to determine which modules admit connections. We easily verified that the projective modules admit connections. In fact, they form an affine space. But we also display a module that is not projective and has connection. Later, inspired by Swan's theorem, we explore in a straightforward way modules formed by sections of the tangent bundle of some surfaces in 3-dimensional real space. Finally, we study the notion of connection introduced by Alain Connes in modules over K-algebras not necessarily commutative. And we find in that context that the modules that have connection are exactly the projectives modules. / As noções de conexão e derivada covariante tem sua origem na área de geometria riemanniana, onde não existe distinção entre elas. De fato, nós verificamos neste trabalho, que estas noções são equivalentes se considerarmos módulos sobre K-álgebras comutativas de tipo finito. Também mostramos que a existência de conexões implica na existência de derivada covariante. O objetivo central deste trabalho é determinar que módulos admitem conexão. Verificamos facilmente que os módulos projetivos admitem conexões. De fato, elas formam um espaço afim. Mas também exibimos um módulo não projetivo que possui conexão. Posteriormente, inspirados pelo teorema de Swan, exploramos de maneira direta os módulos formados pelas seções do fibrado tangente de algumas superfícies no espaço 3- dimensional real. Por fim, estudamos a noção de conexão introduzida por Alain Connes em módulos sobre K-álgebras não necessariamente comutativas. E verificamos nesse contexto que os módulo que admitem conexão são exatamente os módulos projetivos.
6

Towards Discretization by Piecewise Pseudoholomorphic Curves / Zur Diskretisierung durch stückweise pseudoholomorphe Kurven

Bauer, David 27 January 2014 (has links) (PDF)
This thesis comprises the study of two moduli spaces of piecewise J-holomorphic curves. The main scheme is to consider a subdivision of the 2-sphere into a collection of small domains and to study collections of J-holomorphic maps into a symplectic manifold. These maps are coupled by Lagrangian boundary conditions. The work can be seen as finding a 2-dimensional analogue of the finite-dimensional path space approximation by piecewise geodesics on a Riemannian manifold (Q,g). For a nice class of target manifolds we consider tangent bundles of Riemannian manifolds and symplectizations of unit tangent bundles. Via polarization they provide a rich set of Lagrangians which can be used to define appropriate boundary value problems for the J-holomorphic pieces. The work focuses on existence theory as a pre-stage to global questions such as combinatorial refinement and the quality of the approximation. The first moduli space of lifted type is defined on a triangulation of the 2-sphere and consists of disks in the tangent bundle whose boundary projects onto geodesic triangles. The second moduli space of punctured type is defined on a circle packing domain and consists of boundary punctured disks in the symplectization of the unit tangent bundle. Their boundary components map into single fibers and at punctures the disks converge to geodesics. The coupling boundary conditions are chosen such that the piecewise problem always is Fredholm of index zero and both moduli spaces only depend on discrete data. For both spaces existence results are established for the J-holomorphic pieces which hold true on a small scale. Each proof employs a version of the implicit function theorem in a different setting. Here the argument for the moduli space of punctured type is more subtle. It rests on a connection to tropical geometry discovered by T. Ekholm for 1-jet spaces. The boundary punctured disks are constructed in the vicinity of explicit Morse flow trees which correspond to the limiting objects under degeneration of the boundary condition.
7

Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie Groups

Hindeleh, Firas Y. 06 September 2006 (has links)
No description available.
8

Towards Discretization by Piecewise Pseudoholomorphic Curves

Bauer, David 04 December 2013 (has links)
This thesis comprises the study of two moduli spaces of piecewise J-holomorphic curves. The main scheme is to consider a subdivision of the 2-sphere into a collection of small domains and to study collections of J-holomorphic maps into a symplectic manifold. These maps are coupled by Lagrangian boundary conditions. The work can be seen as finding a 2-dimensional analogue of the finite-dimensional path space approximation by piecewise geodesics on a Riemannian manifold (Q,g). For a nice class of target manifolds we consider tangent bundles of Riemannian manifolds and symplectizations of unit tangent bundles. Via polarization they provide a rich set of Lagrangians which can be used to define appropriate boundary value problems for the J-holomorphic pieces. The work focuses on existence theory as a pre-stage to global questions such as combinatorial refinement and the quality of the approximation. The first moduli space of lifted type is defined on a triangulation of the 2-sphere and consists of disks in the tangent bundle whose boundary projects onto geodesic triangles. The second moduli space of punctured type is defined on a circle packing domain and consists of boundary punctured disks in the symplectization of the unit tangent bundle. Their boundary components map into single fibers and at punctures the disks converge to geodesics. The coupling boundary conditions are chosen such that the piecewise problem always is Fredholm of index zero and both moduli spaces only depend on discrete data. For both spaces existence results are established for the J-holomorphic pieces which hold true on a small scale. Each proof employs a version of the implicit function theorem in a different setting. Here the argument for the moduli space of punctured type is more subtle. It rests on a connection to tropical geometry discovered by T. Ekholm for 1-jet spaces. The boundary punctured disks are constructed in the vicinity of explicit Morse flow trees which correspond to the limiting objects under degeneration of the boundary condition.
9

Anisotropic frameworks for dynamical systems and image processing / Anizotropna radna okruženja za dinamičke sisteme i obradu slika

Stojanov Jelena 23 April 2015 (has links)
<p>The research topic of this PhD thesis is a comparative analysis of classical specic&nbsp;geometric frameworks and of their anisotropic extensions; the construction of three different&nbsp;types of Finsler frameworks, which are suitable for the analysis of the cancer cells population&nbsp;dynamical system; the development of the anisotropic Beltrami framework theory with the&nbsp;derivation of the evolution&nbsp;ow equations corresponding to different classes of anisotropic&nbsp;metrics, and tentative applications in image processing.</p> / <p>Predmet istraživanja doktorske disertacije je uporedna analiza klasičnih i specifičnih&nbsp;geometrijskih radnih okruženja i njihovih anizotropnih pro&scaron;irenja; konstrukcija &nbsp;tri Finslerova&nbsp;radna okruženja različitog tipa koja su pogodna za analizu dinamičkog &nbsp;sistema populacije&nbsp;kanceroznih ćelija; razvoj teorije anizotropnog Beltramijevog radnog okruženja i formiranje&nbsp;jednačina evolutivnog toka za različite klase anizotropnih metrika, kao i mogućnost primene&nbsp;dobijenih teorijskih rezultata u digitalnoj obradi slika.</p>

Page generated in 0.0762 seconds