• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 14
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE PHILLIPS LABORATORY’S MOBILE GROUND TRACKING STATION (MGTS)

Stone, Christopher E., Flint, Keith D., Mathis, Gregory P. 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / Phillips Laboratory's Space Experiments Directorate (PL/SX) is operating and upgrading the laboratory's premier transportable satellite tracking station, the Mobile Ground Tracking Station (MGTS) program. MGTS supports orbital, suborbital, and aircraft missions as a range system capable of processing and recording multiple data streams. MGTS receives, processes, displays, and records satellite state-of-health data, infrared images in a variety of wavelengths, video data, and state vector solutions based on IR returns from the Miniature Sensor Technology Integration (MSTI) satellite program. The program has began in 1990 under BMDO sponsorship, with the intent to supplement existing test ranges with more flexibility in range operations. Wyle Laboratories and Systems Engineering and Management Company (SEMCO) provided the technical expertise necessary to create the first MGTS system. Autonomy and off-road capability were critical design factors, since some of the operations envisioned require deployment to remote or hostile field locations. Since inception, MGTS has supported the Lightweight Exo-Atmospheric Projectile (LEAP) sub-orbital missions, the MSTI satellite program, and Air Force wargame demonstrations. In pursuit of these missions, MGTS has deployed to White Sands Missile Range (WSMR), NM; Air Force Flight Test Center (AFFTC), Edwards AFB, CA; Vandenberg AFB, CA; Falcon AFB, CO; and NASA's Wallops Island Flight Facility, VA, to receive critical mission telemetry data conforming to both IRIG and SGLS standards. This paper will describe the evolution of the MGTS program, current hardware configurations and past and future mission scenarios for the MGTS team.
2

Distributed Ground Station Network for CubeSat Communications

Leffke, Zachary James 27 January 2014 (has links)
In the last decade the world has seen a steadily increasing number of Cube Satellites deployed to Low Earth Orbit. Traditionally, these cubesats rely on Amateur Radio communications technology that are proven to work from space. However, as data volumes increase, the existing Amateur Radio protocols, combined with the restrictions of use for the Amateur Radio Spectrum, as well as the trend to build one control station per cubesat, result in a bottle neck effect whereby existing communications methods are no longer sufficient to support the increasing data volumes of the spacecraft. This Masters Thesis work explores the concept of deploying a network of distributed ground station receiver nodes for the purposes of increasing access time to the spacecraft, and thereby increasing the potential amount of data that can be transferred from orbit to the ground. The current trends in cubesat communications will be analyzed and an argument will be made in favor of transitioning to more modern digital communications approaches for on orbit missions. Finally, a candidate ground station receiver node design is presented a possible design that could be used to deploy such a network. / Master of Science
3

Application of a High Data Rate Modem (HDRM)

Orndorff, Tim, Puri, Amit, Smiley, Mike, Connell, John 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / A traditional Receiver, Modulator, Bit Synchronizer, Frame Synchronizer and Front-End Processor (FEP) with local RAID storage from numerous satellite ground station equipment providers is typically used to satisfy current needs in mission ground stations. The development of Software Defined Radios (SDRs) with reprogrammable personalities has led to the consolidation of these processing elements, and will become the standard for years to follow. CVG-Avtec Systems, Inc. has been a pioneer in the SDR industry, integrating several ground station functions into a one system solution. Its High Data Rate Modem (HDRM) architecture replaces racks of previous generation equipment, providing greater functionality in a smaller footprint. The Field Programmable Gate Array (FPGA) based HDRM is a one system solution that inputs Intermediate Frequency (IF) data and outputs packetized data over IP for data distribution. These new architectures are capitalizing on the revolution in electronics and networking technologies. This paper will discuss the architecture of the HDRM and how it optimizes ground station data processing in a high-rate environment.
4

NAVY FLIGHT TEST AND THE REAL-TIME TELEMETRY PROCESSING SYSTEM

Hummel, William R. 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The architecture and capabilities of Navy Flight Test’s latest generation telemetry system are described. The Real-time Telemetry Processing System (RTPS) is the name ascribed to successive systems at the Patuxent River Navy Flight Test complex since 1973. This version of the system, dubbed RTPS IV, and the associated facility improvements will enable the Navy to support the next generation military fighter, the Joint Strike Fighter, and every other ongoing and planned Navy test program.
5

Telemetry Ground Station Data Servers for Real-Time Expert Systems

Silagi, Randall L., Friedman, Paul J. 11 1900 (has links)
International Telemetering Conference Proceedings / October 29-November 02, 1990 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Expert systems can be of great benefit to analysts, mission controllers, and flight safety officers who must make real-time decisions based upon a myriad of quickly changing parameters. Operators may require extensive training to view a limited parameter set or they can be aided by computers systematically monitoring many parameters. But, even today’s powerful general purpose computers and workstations are limited in their capabilities to monitor (i.e., process) the desired number of parameters. Thus, applications are distributed across multiple platforms. A telemetry ground station front end system (i.e., a real-time data server) that distributes preprocessed data to multiple knowledge stations over standard communications networks is presented.
6

TELEMETERY DATA COLLECTION FROM OSCAR SATELLITES

Haddock, Paul C. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / This paper discusses the design, configuration, and operation of a satellite station built for the Center for Space Telemetering and Telecommunications Laboratory in the Klipsch School of Electrical and Computer Engineering Engineering at New Mexico State University (NMSU). This satellite station consists of a computer-controlled antenna tracking system, 2m/70cm transceiver, satellite tracking software, and a demodulator. The satellite station receives satellite telemetry, allows for voice communications, and will be used in future classes. Currently this satellite station is receiving telemetry from an amateur radio satellite, UoSAT-OSCAR-11. Amateur radio satellites are referred to as Orbiting Satellites Carrying Amateur Radio (OSCAR) satellites.
7

A DESIGN FOR SATELLITE GROUND STATION RECEIVER AUTOCONFIGURATION

De Leon, Phillip, Wang, Qingsong, Horan, Steve, Lyman, Ray 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / In this paper, we propose a receiver design for satellite ground station use which can demodulate a waveform without specific knowledge of the data rate, convolutional code rate, or line code used. Several assumptions, consistent with the Space Network operating environment, are made including only certain data rates, convolutional code rates and generator polynomials, and types of line encoders. Despite the assumptions, a wide class of digital signaling (covering most of what might be seen at a ground station receiver) is captured. The approach uses standard signal processing techniques to identify data rate and line encoder class and a look up table with coded sync words (a standard feature of telemetry data frame header) in order to identify the key parameters. As our research has shown, the leading bits of the received coded frame can be used to uniquely identify the parameters. With proper identification, a basic receiver autoconfiguration sequence (date rate, line decoder, convolutional decoder) may be constructed.
8

NETWORKING SATELLITE GROUND STATIONS USING LABVIEW

Mauldin, Kendall 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / A multi-platform network design that is automated, bi-directional, capable of store and forward operations, and low-bandwidth has been developed to connect multiple satellite ground stations together in real-time. The LabVIEW programming language has been used to develop both the server and client aspects of this network. Future plans for this project include implementing a fully operational ground network using the described concepts, and using this network for real-time satellite operations. This paper describes the design requirements, RF and ground-based network configuration, software implementation, and operational testing of the ground network.
9

A SPACE LINK EXTENSION IMPLEMENTATION FOR INTEGRAL

Nemesure, Gregg, Safigan, Brian 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / CCSDS recommendations initially addressed the communication link between spacecraft and ground station. Space Link Extension (SLE) is a set of CCSDS recommended standards for extending the link to control centers, allowing distributed access to space link telecommand and telemetry services. The recommendations encompass the specification of both services and access methods. This paper discusses an implementation of SLE that will be used to provide Forward CLTU service to the upcoming INTEGRAL (International Gamma Ray Astrophysics Laboratory) mission.
10

Using COTS Graphics Processing Units in Signal Analysis Workstations

Crook, Alex, Kissinger, Gregory 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / Commercial off-the-shelf (COTS) graphics processing units (GPU) perform the signal processing operations needed for video games and similar consumer applications. The high volume and competitive nature of that industry have produced inexpensive GPUs with impressive amounts of signal processing power. These devices use parallel processing architectures to execute DSP algorithms far faster than single, or even multi-core central processing units typically found in workstations. This paper describes a project which improves the performance of a radar telemetry application using the NVidia™ brand GPU and CUDA™ software, although the results could be extended to other devices.

Page generated in 0.1077 seconds