• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive Detection and Estimation Using a Conformal Array Antenna

Hersey, Ryan Kenneth 22 November 2004 (has links)
Conformal arrays possess certain desirable characteristics for deployment on unmanned aerial vehicles and other payload-limited platforms: aerodynamic design, minimal payload weight, increased field of view, and ease of integration with diverse sensor functions. However, the conformal arrays nonplanar geometry causes high adaptive losses in conventional space-time adaptive processing (STAP) algorithms. In this thesis, we develop a conformal array signal model and apply it to evaluate the performance of conventional STAP algorithms on simulated ground clutter data. We find that array-induced clutter nonstationarity leads to high adaptive losses, which greatly burden detection performance. To improve adaptive performance, we investigate the application of existing equivalent-linear-array transformations and develop novel deterministic and adaptive angle-Doppler compensation techniques, which align nonstationary clutter returns. Through the application of these techniques, we are able to nearly fully mitigate the nonstationary behavior yielding performance similar to that of a conventional planar array. Finally, we investigate the impact of array errors on the performance of conformal arrays, and propose several array calibration techniques as ameliorating solutions.
2

Détection d'obstacles et de cibles de collision par un radar FMCW aéroporté / Obstacles and Collision Target detection by FMCW airborne radar

Goy, Philippe 18 December 2012 (has links)
Cette thèse, réalisée en partenariat avec Rockwell-Collins France, s'inscrit dans le cadre du développement d'un radar FMCW aéroporté de détection d'obstacles fonctionnant en bande X. Dans cette thèse, nous nous plaçons dans le contexte plus général de détection de cibles présentant un risque de collision avec le porteur radar dans du fouillis de sol. Les performances de détection des cibles d'intérêt diminuent grandement lorsqu'elles se retrouvent dans les zones de fouillis. Le principal objectif de cette thèse réside ainsi dans la conception de traitements en vue d'améliorer les capacités de détection et de reconnaissance de cibles présentant un risque de collision avec le porteur radar dans les zones de fouillis de sol. Dans un premier temps, nous effectuons une revue des traitements adaptés à la détection d'obstacles par un radar aéroporté FMCW: formation de faisceaux conventionnelle, compensation de migration distance, et création d'une cartographie distance-vitesse par double FFT. Dans un second temps, nous utilisons ensuite un traitement d'antennes adaptatif pour séparer en élévation le fouillis de sol et d'éventuels obstacles situés au-dessus du sol pouvant présenter un risque pour le porteur (câbles, pylônes, immeubles, ...). Dans la seconde partie de cette thèse, nous incluons une information supplémentaire sur le signal temporel d'une case distance avec un temps d'intégration plus long~: la variation de fréquence Doppler des cibles. Une cible de collision ou un câble ne changent pas de fréquence tandis qu'un élément au sol aura une variation connue dépendant de la vitesse du porteur et de son angle de vue. Cette information nous a tout d'abord permis de séparer le signal d'un pylône et d'un câble, pour ensuite séparer la cible de collision du fouillis de sol. Enfin, nous effectuons la détection adaptative d'une cible mobile de collision étendue en distance et noyée dans le fouillis de sol. Les algorithmes développés dans cette thèse ont été testés avec succès sur données expérimentales. / This thesis, in collaboration with Rockwell-Collins France, forms part of the development of an X-band FMCW airborne radar designed for obstacles detection and collision avoidance. More precisely, this thesis deals with the problem of detecting targets which exhibit a collision trajectory with the radar carrier, in presence of ground clutter. Target detection performances are highly degraded when the targets of interest fall into ground clutter. The main goal of this thesis is to develop signal processing methods to increase radar detection capacities and recognition for collision targets inside ground clutter. First, we give a brief review of signal processing methods for target detection using an airborne FMCW radar : conventional beamforming, range migration compensation, double-FFTs for Range-Doppler Map visualization. We then derive an adaptive antenna array processing to separate ground clutter and fixed hazardous obstacles above the ground (cables, pylons, buildings, ...) using their difference in elevation angle. In the second part of this thesis, we use a long integration time and include extra information on the time model of a range cell signal : Doppler frequency variation. A collision target does not exhibit Doppler frequency variation, whereas fixed obstacle or ground clutter exhibits a known variation depending on the carrier velocity and the aspect angle. We take advantage of this variation first to separate a cable from a pylon, and then separate collision target from ground clutter. We finally tackle the problem of adaptively detecting a collision mobile spread target in ground clutter region. The proposed algorithms in this thesis have been successively tested on experimental data.
3

Airborne Radar Ground Clutter Suppression Using Multitaper Spectrum Estimation : Comparison with Traditional Method

Ekvall, Linus January 2018 (has links)
During processing of data received by an airborne radar one of the issues is that the typical signal echo from the ground produces a large perturbation. Due to this perturbation it can be difficult to detect targets with low velocity or a low signal-to-noise ratio. Therefore, a filtering process is needed to separate the large perturbation from the target signal. The traditional method include a tapered Fourier transform that operates in parallel with a MTI filter to suppress the main spectral peak in order to produce a smoother spectral output. The difference between a typical signal echo produced from an object in the environment and the signal echo from the ground can be of a magnitude corresponding to more than a 60 dB difference. This thesis presents research of how the multitaper approach can be utilized in concurrence with the minimum variance estimation technique, to produce a spectral estimation that strives for a more effective clutter suppression. A simulation model of the ground clutter was constructed and also a number of simulations for the multitaper, minimum variance estimation technique was made. Compared to the traditional method defined in this thesis, there was a slight improvement of the improvement factor when using the multitaper approach. An analysis of how variations of the multitaper parameters influence the results with respect to minimum detectable velocity and improvement factor have been carried out. The analysis showed that a large number of time samples, a large number of tapers and a narrow bandwidth provided the best result. The analysis is based on a full factorial simulation that provides insight of how to choose the DPSS parameters if the method is to be implemented in a real radar system.
4

Low Altitude Radar Wave Propagation Modelling

Sengul, Orhan 01 May 2007 (has links) (PDF)
LOW ALTITUDE RADAR WAVE PROPAGATION MODELLING In this PhD thesis, propagation aspects of low altitude radar performance have been modeled using geometrical optics. Both the path propagation factor and the radar clutter have been modeled. Such models already exist at various complexity levels, such as round earth specular reflection combined with knife edge hill diffraction [SEKE:IEEE,Ap- 34,No:8,1980] and round earth and slant plateau reflection combined with hill diffraction [RADCAL: 1988-2000,EE,METU]. In the proposed model we have considered an extension to RADCAL&rsquo / s model to include convex and concave slant plateaus between hills and depressions (troughs). This propagation model uses a reflection model based on the Geometrical Theory of Reflection for the convex and concave surfaces. Also, back scattering from surface (clutter) is formulated for the new model of the terrain profile. The effects of the features of the terrain profile on the path propagation factor have been investigated. A real terrain data have been smoothed on the basis of the above study. In order to verify the formulation, the Divergence and Convergence Factors associated with the convex and concave plateaus, respectively are inserted into the RADCAL program. The chosen terrains have convex or concave plateaus in the model. The output of the RADCAL is compared with measured values and other propagation algorithms such as Forward-Backward Spectrally Accelerated (FBSA) [FBSA:IEEE Vol.53, No:9,2005] and Parabolic Equation Method [TPEM:IEEE Vol.42,No:1,1994]. Moreover, as the RADCAL Propagation model is based on the ray optics, the results are also compared with another ray optics based propagation model. For this purpose the results of SEKE [Lincoln Lab.] propagation model are used. SEKE model has been used to compute path loss for different types of terrain as a function of receiving antenna height at a fixed distance between transmit and receive antennas. For Beiseker W35 Terrain profile, the results of RADCAL, SEKE and measurements are compared. All results are in good agreement with those of RADCAL.

Page generated in 0.065 seconds