• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 11
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study of aerofoils at high angle of attack in ground effect

Walter, Daniel James, Daniel.james.walter@gmail.com January 2007 (has links)
Aerodynamic devices, such as wings, are used in higher levels of motorsport (Formula-1 etc.) to increase the contact force between the road and tyres (i.e. to generate downforce). This in turn increases the performance envelope of the race car. However the extra downforce increases aerodynamic drag which (apart from when braking) is generally detrimental to lap-times. The drag acts to slow the vehicle, and hinders the effect of available drive power and reduces fuel economy. Wings, in automotive use, are not constrained by the same parameters as aircraft, and thus higher angles of attack can be safely reached, although at a higher cost in drag. Variable geometry aerodynamic devices have been used in many forms of motorsport in the past offering the ability to change the relative values of downforce and drag. These have invariably been banned, generally due to safety reasons. The use of active aerodynamics is currently legal in both Formula SAE (engineering compet ition for university students to design, build and race an open-wheel race car) and production vehicles. A number of passenger car companies are beginning to incorporate active aerodynamic devices in their designs. In this research the effect of ground proximity on the lift, drag and moment coefficients of inverted, two-dimensional aerofoils was investigated. The purpose of the study was to examine the effect ground proximity on aerofoils post stall, in an effort to evaluate the use of active aerodynamics to increase the performance of a race car. The aerofoils were tested at angles of attack ranging from 0° - 135°. The tests were performed at a Reynolds number of 2.16 x 105 based on chord length. Forces were calculated via the use of pressure taps along the centreline of the aerofoils. The RMIT Industrial Wind Tunnel (IWT) was used for the testing. Normally 3m wide and 2m high, an extra contraction was installed and the section was reduced to form a width of 295mm. The wing was mounted between walls to simulate 2-D flow. The IWT was chosen as it would allow enough height to reduce blockage effect caused by the aerofoils when at high angles of incidence. The walls of the tunnel were pressure tapped to allow monitoring of the pressure gradient along the tunnel. The results show a delay in the stall of the aerofoils tested with reduced ground clearance. Two of the aerofoils tested showed a decrease in Cl with decreasing ground clearance; the third showed an increase. The Cd of the aerofoils post-stall decreased with reduced ground clearance. Decreasing ground clearance was found to reduce pitch moment variation of the aerofoils with varied angle of attack. The results were used in a simulation of a typical Formula SAE race car.
12

Compressible ground effect aerodynamics

Doig, Graham , Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
The aerodynamics of bodies in compressible ground effect flowfields from low-subsonic to supersonic Mach numbers have been investigated numerically and experimentally. A study of existing literature indicated that compressible ground effect has been addressed sporadically in various contexts, without being researched in any comprehensive detail. One of the reasons for this is the difficulty involved in performing experiments which accurately simulate the flows in question with regards to ground boundary conditions. To maximise the relevance of the research to appropriate real-world scenarios, multiple bodies were examined within the confines of their own specific flow regimes. These were: an inverted T026 wing in the low-to-medium subsonic regime, a lifting RAE 2822 aerofoil and ONERA M6 wing in the transonic regime, and a NATO military projectile at supersonic Mach numbers. Two primary aims were pursued. Firstly, experimental issues surrounding compressible ground effect flows were addressed. Potential problems were found in the practice of matching incompressible Computational Fluid Dynamics (CFD) simulations to wind tunnel experiments for the inverted wing at low freestream Mach numbers (<0.3), where the inverted wing was found to experience significant compressible effects even at Mach 0.15. The approach of matching full-scale CFD simulations to scale model testing at an identical Reynolds number but higher Mach number was analysed and found to be prone to significant error. An exploration was also conducted of appropriate ways to conduct experimental tests at transonic and supersonic Mach numbers, resulting in the recommendation of a symmetry (image) method as an effective means of approximating a moving ground boundary in a small-scale blowdown wind tunnel. Issues of scale with regards to Reynolds number persisted in the transonic regime, but with careful use of CFD as a complement to experiments, discrepancies were quantified with confidence. The second primary aim was to use CFD to gain a broader understanding of the ways in which density changes in the flowfield affect the aerodynamic performance of the bodies in question, in particular when a shock wave reflects from the ground plane to interact again with the body or its wake. The numerical approach was extensively verified and validated against existing and new experimental data. The lifting aerofoil and wing were investigated over a range of mid-to-high subsonic Mach numbers (1>M???>0.5), ground clearances and angles of incidence. The presence of the ground was found to affect the critical Mach number, and the aerodynamic characteristics of the bodies across all Mach numbers and clearances proved to be highly sensitive to ground proximity, with a step change in any variable often causing a considerable change to the lift, moment and drag coefficients. At the lowest ground clearances in both two and three dimensional studies, the aerodynamic efficiency was generally found to be less than that of unbounded (no ground) flight for shock-dominated flowfields at freestream Mach numbers greater than 0.7. In the fully-supersonic regime, where shocks tend to be steady and oblique, a supersonic spinning NATO projectile travelling at Mach 2.4 was simulated at several ground clearances. The shocks produced by the body reflected from the ground plane and interacted with the far wake, the near wake, and/or the body itself depending on the ground clearance. The influence of these wave reflections on the three-dimensional flowfield, and their resultant effects on the aerodynamic coefficients, was determined. The normal and drag forces acting on the projectile increased in exponential fashion once the reflections impinged on the projectile body again one or more times (at a height/diameter ground clearance h/d<1). The pitching moment of the projectile changed sign as ground clearance was reduced, adding to the complexity of the trajectory which would ensue.
13

Air flow near a water surface /

Grundy, Ian H. January 1986 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Applied Mathematics, 1986. / Includes bibliographical references (leaves 95-97).
14

Design, construction, and evaluation of a peripheral jet ground effect machine

Jensen, Robert Harold, January 1966 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1966. / eContent provider-neutral record in process. Description based on print version record. Bibliography: l. 126-128.
15

A theoretical and experimental investigation of the annular jet ground effect machine

Graham, William Alexander January 1960 (has links)
In this work the infrared absorption of neutron irradiated silicon was compared to that of non-irradiated silicon at room and liquid nitrogen temperatures. It was found that instead of the 1.75 micron absorption band that has been mentioned in numerous papers transmission was completely cut off below about 2.5 microns at room temperature and about 1.8 microns at liquid nitrogen temperature. A weak absorption band was noted at 4.4 microns for all three samples at liquid nitrogen temperature and the two irradiated samples at room temperature. Absorption due to free carriers depressed at the longer wavelengths (10-15 microns) with irradiation and cooling as was expected from past experiments. The resistivity of Si₄ increased from an assumed initial value of 10³ ohm-om to 1.89 x 10⁵ ohm-om. / Master of Science
16

Wing in Ground Effect

Mondal, Partha January 2013 (has links) (PDF)
The thesis presents a two pronged approach for predicting aerodynamics of air- foils/wings in the vicinity of the ground. The first approach is effectively a model for ground effect studies, employing an inexpensive Discrete Vortex Method for the 2D pre- dictions and the well known Numerical lifting line theory for the 3D predictions. The second one pertains to the dynamic ground effect analysis which employs the state of the art moving mesh methodology based time accurate CFD. In that sense, the thesis deals with two ends of spectrum in the ground effect analysis; one, a model to be used in the concept design phase and the other an advanced CFD tool for analysis. The proposed model for ground effect studies is based on the well known Discrete Vortex Method (DVM). An important aspect of this method is that it employs what is referred to as the Generalized Kutta Joukowski Theorem (GKJ), meant for interaction problems with multiple vortices, for predicting the lift (and drag) within a potential flow framework. After ascertaining the correctness of using the GKJ theorem for lift prediction for airfoils in ground effect, a modified DVM is presented as a model for ground effect predictions. As per this model, knowing the free stream lift and drag (either from an ex- periment or from a RANS computation) the aerodynamics of the section in ground effect can be predicted. The model is effectively built by constraining the DVM to produce the reference lift/drag in the free stream. The accuracy of the model, particularly for the more relevant high lift sections used during take-off and landing, is systematically estab- lished for a number of test cases. Knowing the sectional ground effect, the extension to 3D analysis is very simple and this is achieved through the well known Numerical Lifting Line theory. The efficacy of the proposed method for the 3D applications is demonstrated using a high lift wing in ground effect. It is worth noting that the proposed model predicts the lift and drag very accurately, practically at no computational cost as compared to modern RANS based CFD tools requiring over 40 or 50 million volumes at a high computational cost and intense human intervention for generating the grids for every ground clearance. The other aspect of the thesis pertains to what is referred to as the Dynamic Ground Effect. Normally the CFD computations mimic the ground effect experiments in simulat- ing the ground effect. These simulations do not maintain geometric similarity with the actual landing or take-off sequence of the aircrafts and this can only be achieved when the simulations are dynamic. Dynamics is also important in case of combat aircrafts (particularly their naval versions) with an aggressive landing and take-off. The dynamic ground effect simulations also provides a framework for simulating varied gust conditions. This dynamic simulation of the ground effect is accomplished using a novel sinking grid methodology, which allows the grids to sink in the ground as the aircraft approaches the ground along the glide path. These simulations make use of the state of the art, time accurate moving grid methods and therefore can be computationally expensive. Never- theless, the utility of such computations in terms of their ability to produce continuous data has been highlighted in the thesis. In that sense, these dynamic computations will be cheaper as compared to the static simulations to produce data at the same level of resolution.
17

Influência de dispositivos de ponta de asa no desempenho de um avião agrícola / The influence of wing tip devices on the performance of an agricultural aircraft

Coimbra, Rogério Frauendorf de Faria 24 October 1997 (has links)
Reduções no arrasto de uma aeronave, beneficiam a performance e, reduzem a potência necessária. A componente do arrasto que oferece grande potencial, é o arrasto induzido, que varia de 30% à 50% do arrasto total. Este pode ser diminuído através de modificações nas pontas de asa. Alguns modelos, deslocam os vórtices da ponta de asa para fora, diminuindo o arrasto induzido. Outros modelos, aproveitam o fluxo em espiral nesta região, para produzirem uma tração, reduzindo o arrasto total, como as \"winglets\". Tratando-se de aviões agrícolas, que efetuam a deposição de defensivos sobre plantações em vôos rasantes, deslocamentos do vórtice são fundamentais para o aumento da eficiência do processo de pulverização. Este trabalho estudou, através de ensaios em túnel de vento, variações nas características aerodinâmicas de uma asa impostas por modificações em suas pontas. As pontas ensaiadas foram: \'delta tip\', \"winglet\" e Hoerner. Para aproximar os ensaios da realidade operacional, adicionou-se uma placa plana, paralela ao fluxo, simulando o efeito solo que ocorre no vôo rasante, durante a \"passagem\". Efetuou-se também, visualizações de fluxo para cada configuração. A ponta tipo \"Hoerner\" apresentou maior beneficio aerodinâmico e estrutural, mas não é adequada ao serviço agrícola por deslocar o vórtice para baixo, prejudicando a deposição. A \'delta tip\' possui rendimento menor porém, o vórtice melhor posicionado. Já a asa com \"winglet\", proporciona beneficio aerodinâmico modesto, excelente posicionamento do vórtice mas, prejuízo estrutural. / An airplane\'s drag reductions can improve performance and reduce the required power. The induced drag is the component which, if reduced, offers better results, because it is responsible from 30% to 50% of total drag. Such reductions in drag can be achieved through modifications of the wing tips. Some models displace wing tip vortices outwards diminishing the induced drag. Others, like the \'\'winglets\'\', make good use of the spiral draught on this portion of the wing, producing traction and reducing the total drag. Concerning agricultural airplanes, wing tip vortex position is really important while spreading products over a plantation. In this work, wind tunnel tests were made in order to find a better wing tip among the folowing types for this use: the delta tip, \"winglet\" and \"Hoerner\". The \'\'Hoerner\'\' tip was better for total drag reduction, but not good with reference to vortex position. The delta tip gave low improvement on aerodynamic characteristics, but a good vortiex position. The \"winglet\" tip had a better vortex position, but caused an undesirable result with reference to the wing root bending moment.
18

A procedure to evaluate the feasibility of naval ship designs

Cassedy, William Augustus Tyler January 1977 (has links)
Thesis. 1977. Ocean E.--Massachusetts Institute of Technology. Dept. of Ocean Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by William Augustus Tyler Cassedy IV. / Ocean E.
19

Air flow near a water surface / by Ian H. Grundy

Grundy, Ian H. January 1986 (has links)
Bibliography: leaves 95-97 / iv, 97 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Applied Mathematics, 1986
20

Aerodynamics and performance enhancement of a ground-effect diffuser

Ehirim, Obinna Hyacinth January 2018 (has links)
This study involved experimental and equivalent computational investigations into the automobile-type 3―D flow physics of a diffuser bluff body in ground-effect and novel passive flow-control methods applied to the diffuser flow to enhance the diffuser’s aerodynamic performance. The bluff body used in this study is an Ahmed-like body employed in an inverted position with the slanted section together with the addition of side plates along both sides forming the ramped diffuser section. The first part of the study confirmed reported observations from previous studies that the downforce generated by the diffuser in proximity to a ground plane is influenced by the peak suction at the diffuser inlet and subsequent static pressure-recovery towards the diffuser exit. Also, when the bluff body ride height is gradually reduced from high to low, the diffuser flow as indicated by its force curve and surface flow features undergoes four distinct flow regimes (types A to D). The types A and B regimes are reasonably symmetrical, made up of two low-pressure core longitudinal vortices travelling along both sides of the diffuser length and they increase downforce and drag with reducing ride height. However, below the ride heights of the type B regime, types C and D regimes are asymmetrical because of the breakdown of one vortex; consequently a significant loss in downforce and drag occurs. The second part of the study involved the use ― near the diffuser exit ― of a convex bump on the diffuser ramp surface and an inverted wing between the diffuser side plates as passive flow control devices. The modification of the diffuser geometry with these devices employed individually or in combination, induced a second-stage pressure-drop and recovery near the diffuser exit. This behaviour was due to the radial pressure gradient induced on the diffuser flow by the suction surface ii curvature of the passive devices. As a result of this aerodynamic phenomenon, the diffuser generated across the flow regimes additional downforce, and a marginal increase in drag due to the profile drag induced by the devices.

Page generated in 0.1213 seconds