Spelling suggestions: "subject:"2around station"" "subject:"4wsground station""
31 |
Návrh a implementace SW architektury bezpilotního letounu / Design and implementation of UAV SW architectureKuchař, Vojtěch January 2014 (has links)
This thesis describes design and implementation of SW architecture for autopilot of unmanned aircraft including flight data logging, integration of automatically generated code from Matlab Simulink and communication with ground station.
|
32 |
Design and Development of the Space Campus Ground Station for Small SatellitesElfvelin, Martin January 2021 (has links)
With the launch of the first CubeSat a trend of easy access to Low Earth Orbit was started. Today many educational institutes around the world design, build and operate CubeSats for educational as well as scientific purposes. This Master thesis work presents designs and development in hardware and software to achieve a flexible ground segment at the Luleå University of Technology Space Campus in Kiruna, Sweden. The existing ground station is adapted to support more frequencies and modes of operation to enable future nanosatellite projects at the university easy access to space communication. New equipment is procured and installed with existing equipment in a new location using a 19 inch rack. The thesis presents a ground segment design using software-defined radio to promote flexibility and adaptability. Software development for the ground station is carried out together with Remos Space Systems a start-up at the Arctic Business Incubator that is developing a commercial ground station software. Furthermore a brief analysis of establishing a S-band receive-only ground station at the university is conducted and a trade-off analysis regarding mission control software is made. The thesis lays the foundation and highlights future development needs for the Space Campus ground station to become operational again.
|
33 |
Frequency Estimation of Linear FM Scatterometer Pulses Received by the SeaWinds Calibration Ground StationHaycock, Spencer S. 17 August 2004 (has links) (PDF)
The SeaWinds Calibration Ground Station (CGS) is a passive ground station used to receive and sample transmissions from the SeaWinds scatterometer. During post processing, the received transmissions are characterized in order to verify proper instrument operation and to eliminate error in satellite telemetry and in data products generated from processing SeaWinds data. Sources of instrument error include uncertainties in transmitted power, pulse timing, and carrier frequency drift. Identifying these errors prevents their propagation to data products. A key aspect of this analysis involves accurately estimating the parameters of the SeaWinds transmissions. As better parameter estimates are researched and developed, the scatterometer can be more finely calibrated and better characterized, allowing improved accuracy of environmental measurements. This work explores several methods to estimate SeaWinds frequency parameters by parametrically modeling the signal as a series of linear FM pulses. Improved frequency estimates are obtained by transforming the signal into appropriate signal spaces. These methods are compared and their tradeoffs revealed. SNR regions are assigned to each method to mark appropriate performance bounds, and improvements over previous SeaWinds data analysis methods are shown. Finally, recent estimates of SeaWinds parameters are disclosed. This analysis helps to advance the level to which future scatterometer instruments may be calibrated, providing the potential for more accurate scatterometer data products.
|
34 |
Image Processing Pipeline and a Global Search for Local Maxima Method of Object DetectionNathan Kampe Houtz (19273654) 01 August 2024 (has links)
<p dir="ltr">Optical observations provide a cost-effective means of tracking satellites and space debris with high angular accuracy, and many amateur, academic, and professional observers use them extensively. Optical images can be accumulated quickly, and automation is important to rapidly produce accurate measurements of objects found in them. Effects like atmospheric refraction, atmospheric scattering of incoming light, aberration due to the motion of the observer, image distortions from the optics of the telescope, scintillation due to atmospheric turbulence, limited resolution, and various sources of noise create challenges for observers. An image processing pipeline has been developed from scratch for the purpose of automating the collection of data with the Purdue Optical Ground Station telescope. Effects that are deterministic are mathematically modeled and corrected, and all steps of the pipeline are described. A novel method is presented for detecting and optimally estimating the centroids of faint, streaked objects in astronomical images with several-second-long exposure times. The ability to accurately determine the pointing direction of a telescope from the stars in the image is demonstrated with a series of images of a GPS satellite. The resulting orbit is compared with the broadcast ephemeris, with an average positional error of 22.1 meters over the observation period.</p>
|
35 |
Estimation of Drone Location Using Received Signal Strength IndicatorJagini, Varun Kumar 08 1900 (has links)
The main objective of this thesis is to propose a UAV (also called as drones) location estimation system based on LoRaWAN using received signal strength indicator in a GPS denied environment. The drones are finding new applications in areas such as surveillance, search, rescue missions, package delivery, and precision agriculture. Nearly all applications require the localization of UAV during flight. Localization is the method of determining a UAVs physical position using a real or virtual coordinate system. This thesis proposes a LoRaWAN-based UAV location method and presents experimental findings from a prototype. The thesis mainly consists of two different sections: one is the distance estimation and the other is the location estimation. First, the distance is estimated based on the mean RSSI values which are recorded at the ground stations using the path loss model. Later using the slant distance estimation technique, the path loss model parameters L and C are estimated whose values are unknown at the beginning. These values completely depend on the environment. Finally, the trilateration system architecture is employed to find the 3-D location of the UAV.
|
36 |
X-33 INTEGRATED TEST FACILITY EXTENDED RANGE SIMULATIONSharma, Ashley 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base, Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of the various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.
|
37 |
AN AUTONOMOUS SATELLITE TRACKING STATIONAnderson, Mike, Militch, Peter, Pickens, Hugh 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / In 1998, AlliedSignal Technical Services (ATSC) installed three fully autonomous 13-meter satellite tracking systems for the Integrated Program Office of the National Oceanic
and Atmospheric Administration (NOAA) at the Command and Data Acquisition Station
near Fairbanks, Alaska. These systems track and command NOAA Polar Orbiting Weather
Satellites and Defense Meteorological Satellites.
Each tracking system operates for extended periods of time with little intervention other
than periodic scheduling contacts. Schedule execution initiates equipment configuration,
including establishing the RF communications link to the satellite. Station autonomy is
achieved through use of a robust scheduler that permits remote users and the System Administrator
to request pass activities for any of the supported missions. Spacecraft in the
mission set are scheduled for normal operations according to the priority they have been
assigned. Once the scheduler resolves conflicts, it builds a human-readable control script
that executes all required support activities. Pass adds or deletes generate new schedule
scripts and can be performed in seconds.
The systems can be configured to support CCSDS and TDM telemetry processing, but the
units installed at Fairbanks required only telemetry and command through-put capabilities.
Received telemetry data is buffered on disk-storage for immediate, post-pass playback,
and also on tape for long-term archiving purposes. The system can autonomously support
up to 20 spacecraft with 5 different configuration setups each. L-Band, S-Band and X-Band
frequencies are supported.
|
38 |
Virtualization of CubeSat downlink ground stations using the APRS I-Gate networkLinton, Greg 17 November 2016 (has links)
This thesis presents the design, simulation and analysis of a new network based on the Automatic Packet Reporting System (APRS) concept to enhance communications of CubeSat.
Created in the 1980s, APRS is arguably one of the world’s largest Radio Frequency (RF) networks maintained by a community of licensed amateur radio volunteers for a variety of terrestrial purposes. Using these established nodes we can create a virtualized ground station network for satellite downlinks.
Based on literature reviews of CubeSat communications systems and their orbital elements, as well as direct surveys of the amateur radio community, comprehensive far-field antenna models were created in 4nec2 for both the ground and space sections of the CubeSat downlink. The ground station antenna models include: a directional AMSAT/OSCAR Yagi-Uda, an omnidirectional J-pole, ground plane, and a whip antenna. The CubeSat antenna models used include dipoles, monopoles, and turnstiles. These models were evaluated and then imported into the Analytical Graphics Inc (AGI) Systems Tool Kit (STK) to form a discrete event simulation based on nonhomogeneous WGS84 location data extracted from real world APRS Internet Gateway (I-Gate) packets. All objects within the simulation use realistic antenna models, node locations, propagation models and satellite orbital mechanics. This simulation can act as a suite of generally applicable example satellites models (ExampleSat) for analytical comparisons that include link budgets, access times, differing data rates, antenna designs, orbital altitudes and ground station locations. Furthermore, it represents a North American continental scale RF satellite communications downlink network model.
Using the virtual ground station network alters the net probability distribution of the received signal from the spacecraft. Specifically, the thesis compares non-stationary time series analysis methods upon the net received signal. The virtualized ground station network enables the aggregated received signal to appear stationary. This in turn may allow for alternative signals analysis techniques to improve a CubeSat’s downlink performance. The simulation allows us to generate representative received signals from ExampleSat to the ground station nodes for exploratory analysis, utilizing less arbitrary assumptions.
This simulation and the set of models enable a more rapid start to trade-off studies for link budget design. This set of ExampleSat downlink models can be used by new designers of small-satellite communications systems. / February 2017
|
39 |
A Tri-Band L, S, C Prime Focus Feed: Concept, Design and PerformanceMelle, Christophe, Chaimbault, David, Peleau, Fabien, Karas, Alain 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / The flight test mission services need higher data rates due to increased system complexity and the need for more accurate, higher rate, and better data acquisition. The existing L or S band frequency spectrum allocation was a limiting factor to meet this increased data rate requirement. The World Radio-communication Conference (WRC 2007) attributed new additional frequency spectrum allocations in the C band for Aeronautical Mobile Telemetry (AMT). The international flight test community has taken this opportunity to immediately take advantage of the new C-band range 5091-5250MHz. This paper presents the multi-band feed product designed by the RF & Antenna Laboratory of ZODIAC DATA SYSTEMS company. This feed is foreseen to be used in prime focus configuration on any diameter parabola dish providing telemetry and tracking channels in three L, S, and C bands. Here, are described the concept and the technology achieved taking into consideration the performance and industrial constraints. Moreover, this contribution focuses on the electromagnetic simulations of radiating elements, the feed network and RF system integration. This paper is structured as follows: firstly, the objectives and the motivation for developing a prime focus feed which works in L, S, C bands are presented. In particular, the market constraints and approach to find the best solution satisfying the feed RF requirements, and mechanical constraints, such as weight, size and cost, are discussed. The second section describes the 5 step development cycle: principle and technology, design of the telemetry channels and tracking function, cohabitation of the different radiating elements, and problems of the channels isolations. The third section discusses the performance achieved using electromagnetic simulations. The fourth section talks about the integration of RF system feed. The paper concludes by discussing future work using the same concept that is applied to other telecommunication or telemetry frequency bands.
|
40 |
Les nuages du Groenland observés par CALIPSO / Clouds over Greenland observed by CALIPSOLacour, Adrien 13 December 2016 (has links)
Plus de 80% du Groenland est recouvert de glace. Sa fonte contribue à l’augmentation du niveau des océans. Cette fonte peut être accélérée ou ralentie par les nuages qui modulent le rayonnement qui atteint la surface. Dans cette thèse, nous avons utilisé les mesures du satellite CALIPSO (produit GOCCP) pour documenter les nuages au-dessus du Groenland et éclaircir leur rôle sur la fonte de surface.Comparer ces observations avec des mesures radar et lidar réalisées à la station sol de Summit, au centre du Groenland, a montré que dans GOCCP les nuages optiquement très fins (τ < 0.3) ne sont pas détectés. Nous avons ensuite étendu l’analyse sur l’ensemble du Groenland et mis en évidence que la région nord est moins recouverte de nuages que la région sud en hiver et qu’en été, Summit, est l’une des régions les plus nuageuses en nuages liquides notamment.Pour comprendre cette particularité et les conditions favorables à la formation de nuages, nous avons utilisé des classifications en régime de temps. Cependant cette étude n’a pas mis à jour de liens entre la variabilité des nuages et la circulation atmosphérique ce qui montre la complexité de ces interactions et la nécessité d’accumuler plus d’observations sur des périodes de temps longues.Enfin nous avons évalué la représentation des nuages dans des observations lidar synthétiques, simulées à partir des sorties de modèles de climat CMIP5. Plusieurs biais qui empêchent les modèles de reproduire l’influence des nuages sur la fonte ont été identifiés. Les modèles sous estiment les températures de surface et les couvertures nuageuses. Les nuages simulés sont soit trop opaques soit trop fins pour accélérer la fonte. / Over 80% of Greenland is covered by ice. Melting of this ice contributes to the sea level rise. By modulating the radiation reaching the surface, clouds can accelerate or slow down the melting. Through this thesis, we use CALIPSO satellite measurements (GOCCP product) to document clouds over Greenland, including their vertical structure, and understand their role in surface melting.We compare these observations with radar and lidar measurement taken from the Summit ground station in the middle of Greenland. The comparison shows that GOCCP does not include optically thin ice clouds (τ < 0.3). Extending this analysis over all Greenland shows that cloudiness follows different cloud annual cycles in North and South regions, and that Summit is one of the cloudiest regions of the Greenland especially for the liquid cloud cover.To understand the atmospheric conditions favorable to cloud formation, we follow two weather regime classification approaches. We do not find a clear relationship between cloud variability and atmospheric circulation. These results show the complexity of the interactions between clouds and synoptic circulation and highlight the need to accumulate more data over long time periods.Finally, we evaluate cloud representation over Greenland in simulated lidar profiles over output from CMIP5 climate models. We identify several biases that lead to models being unable to simulate surface melting. Models underestimate the surface temperature and the cloud cover. Also when clouds are simulated they are either too opaque or too thin to affect surface melting.
|
Page generated in 0.0728 seconds