• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The development of a numerical temperature algorithm to predict the indoor temperature of an electric vehicle's cabin space

Doyle, Aisling January 2018 (has links)
Climate change is a significant issue in today's society as countries work towards decarbonising the economic sectors that contribute to significant greenhouse gas emissions. The electric vehicle (EV) is proposed as a solution to reduce the level of emissions in the transport sector. However, if an EV is powered by an electrical fossil fuelled source, their penetration into the UK market will have minimal mitigating effects, as emissions will simply shift from the transport sector to the energy production sector. Limited research has evaluated the loss of propulsion energy as a result of operating on-board climate control systems, and has focused more on traction energy. Unlike conventional fossil fuelled vehicles, EVs do not produce waste heat to warm the interior space of the vehicle. The present research found that up to 30% of a vehicle's total energy consumed per trip is allocated to heating requirements, thus the present research developed a temperature predicting numerical algorithm to compute indoor cabin temperatures. The vehicle was exposed to ambient climate conditions with an auxiliary heating or cooling system to evaluate this thermal model. The numerical algorithm could predict the temperature of a cabin space under solar space heating conditions with 62% more accuracy than previously developed models when comparing the Root Mean Square Error performance indicator. The presently developed temperature prediction algorithm may be applied to a route planning application, thus indicating the electrical energy required by the vehicle's battery for users to increase or decrease the desired temperature level. Additionally, this study investigated the ability of a renewable energy resource to decarbonise the vehicle's built-in climate control system. Integrating solar panels on the roof and bonnet of an EV to power an auxiliary climate control system reduced the electrical loading required to reach the occupant's thermal comfort. By installing an auxiliary heating system to increase cabin temperature by 2 or 5°C, the present research found that energy consumption of the built-in climate control system was reduced by 22% or 57%, respectively. This illuminates the potential an auxiliary climate control system has in improving the thermal performance of EVs.
12

Transportation energy and carbon footprints for U.S. corridors

Sonnenberg, Anthony H. 10 November 2010 (has links)
Changes in climate caused by changes in anthropogenic (i.e. "man-made") greenhouse gas (GHG) emissions have become a major public policy issue in countries all over the world. With an estimated 28.4% of these emissions attributed to the transportation sector, attention is being focused on strategies aimed at reducing transportation GHG emissions. Quantifying the change in GHG emissions due to such strategies is one of the most challenging aspects of integrating GHG emissions and climate change into transportation planning and policy analysis; the inventory techniques and methods for estimating the impact of different strategies and policies are still relatively unsophisticated. This research developed a method for estimating intercity passenger transportation energy and carbon footprints and applied this method to three US DOT-designated high speed rail (HSR) corridors in the U.S.-- San Francisco/Los Angeles/San Diego; Seattle/Portland/Eugene, and Philadelphia/Harrisburg/Pittsburg. The methodology consists of estimating the number of trips by mode, estimating the direct CO₂ emissions, and estimating indirect CO₂ emissions. For each study corridor the impacts of different strategies and policies on carbon dioxide emissions were estimated as an illustration of the policy application of the developed methodology. The largest gain in CO₂ savings can be achieved by strategies aiming at automobile emissions, due to its sizeable share as main mode and access/egress mode to and from airports and bus and train stations: an average fuel economy of 35.5 mpg would result in a 38-42% savings of total CO₂ emissions; replacing 25% of gasoline use with cellulosic ethanol can have a positive impact on CO₂ emissions of about 13.4-14.5%; and a 10% market share for electric vehicles would result in potential CO₂ savings of 3.4-7.8%. The impact of a 20% or 35% improvement in aircraft efficiency on CO₂ savings is much lower (0.88-3.65%) than the potential impacts of the policies targeting automobile emissions. Three HSR options were analyzed using Volpe's long-distance demand model: HSR125, HSR150, and HSR200. Only the HSR150 and HSR200 would result in CO₂ savings, and then just for two of the three corridors: the Pacific Northwest (1.5%) and California (0.8-0.9%). With increased frequency and load factors, a HSR150 system could result in CO₂ savings of 5.2% and 1.8% for the Pacific Northwest and California, respectively. This would require a mode shift from auto of 5-6%. This shift in auto mode share would mainly have to be a result of pricing strategies. From these results, HSR may not be such an obvious choice, however, with increased ridership and diversions from other modes, CO₂ savings increase significantly due to the lower emissions per passenger mile for HSR. The framework developed in this study has the ability to determine the GHG emissions for such HSR options and increased diversions.
13

Análisis económico del transporte de escoria de acero en reemplazo de agregado en el Perú / Economic análisis of transporting steel slag to replace aggregate in Peru

Reynaga Flores, Wilma Lorena, Rodriguez Llerena, Diana Yadira 21 August 2020 (has links)
Esta investigación plantea descubrir hasta qué punto es factible comprar escoria de acero en reemplazo del material de agregado, mediante el análisis económico del transporte terrestre. La escoria de acero no es muy utilizada en Perú y no se conoce como índice el costo del flete en el costo total para las distintas regiones del Perú. Se plantearon 9 rutas desde las 3 plantas de acero en el Perú, 3 por cada una de ellas. Se iteró a ciudades cada vez más lejanas hasta que el costo de la escoria de acero tenga un precio similar al de los agregados. Se encontraron 6 rutas factibles, cubriendo casi toda la costa del Perú y algunas ciudades del altiplano. / This research proposes to discover to what extent it is feasible to buy steel slag to replace the aggregate material, through the economic analysis of ground transport. Steel slag is not widely used in Peru and it is not known how the cost of freight affects the total cost in the different regions of Peru. Nine routes were proposed from the 3 steel plants in Peru, 3 for each of them. Cities farther and farther away were iterated until the cost of steel slag is similar in price to that of aggregates. Six feasible routes were found, covering almost the entire coast of Peru and some cities in the highlands. / Trabajo de investigación
14

Investing in high-speed passenger rail networks: insights from complex international supply chain, technologies and multiproduct firms

Zheng, Wen 07 May 2012 (has links)
The growth of population and business during the rapid urbanization process in the twentieth century has generated significant demand for transportation. As the demands have grown, road and air transportation are suffering from significant congestion and delays. Continuing expansion of highways and airports has become both expensive and difficult, along with not being able to provide adequate solutions to the growing congestion. One alternative, which is being pursued by many countries, is to invest in efficient high-speed rail networks to meet the pressing demand for mass passenger transportation. This alternative is also one that may have beneficial impacts by reducing energy consumption and alleviating some of the environmental concerns. But to make these infrastructure investments, governments need to make difficult decisions due to the complexity of the industry and technologies involved. This thesis examines decision making by government for such investments. In order to carefully study the industry, we use a two part approach. First, we examine the HSR industry supply-chain. We create a detailed taxonomy of the industry supply-chain and highlight various aspects of the advanced technologies being used, the sophisticated multiproduct nature of the firms, and the diverse international location of the companies. Second, we gather information on all the international HSR contracts between 2001-2011. These contracts enable us to examine business strategies pursued by the major HSR trainset suppliers and component manufacturers, insights into the size of the orders and type of trainsets being delivered, and the formation of partnerships and collaborations to meet the complex demands imposed by Governments when they invite bids for these expensive projects. A detailed examination of the supply-chain shows that the core technologies and competencies are highly concentrated in those countries which historically have had high demand for high-speed rail. Germany, Japan, France, for example, have the highest number of trainset and component suppliers. In more recent years, South Korea and China have emerged as the new frontiers of trainset and components suppliers. This implies that countries who are outside of this group are highly dependent on either importing these technologies and investments or make a concerted effort to develop them via partnerships and technology transfer agreements. Our examination of contracts shows that the size of HSR investment order is important for both business and government strategy. The order size determines the extent of domestic content and production. While many components will inevitably be imported, a larger order size may allow for various components to be manufactured domestically. Order size also appears to influence the nature of partnerships among the firms in the industry. We observe a growing number of HSR investment partnerships among trainset suppliers over time, possibly due to the need to pool risk in these highly complex and uncertain investments, as well as the changing competitive dynamic of HSR markets.
15

Evaluation de la performance acoustique des protections antibruit innovantes utilisant des moyens naturels : application aux transports terrestres

Koussa, Faouzi 28 September 2012 (has links)
Le bruit dû aux infrastructures de transports terrestres fait partie des premières préoccupations environnementales de ce début de 21e siècle. Un moyen utilisé pour réduire ce bruit est de placer des protections acoustiques le long des grands axes routiers et ferroviaires. Actuellement, les choix de ces protections antibruit se portent généralement sur des solutions traditionnelles : écran droit, merlon, écran incliné, écran avec un couronnement. Le but de ce travail est de proposer des protections acoustiques innovantes utilisant des moyens naturels et d’en étudier la performance acoustique en utilisant des approches numériques et expérimentales. L’approche numérique peut être couplée en outre à un outil d’optimisation, développé dans cette thèse, pour chercher des formes améliorées de tels dispositifs antibruit novateurs. Après une présentation des principaux phénomènes mis en jeu dans la propagation des ondes acoustiques en milieu extérieur complexe, un état de l’art des principaux écrans acoustiques dédiés aux transports terrestres a été établi, permettant de choisir trois protections antibruit innovantes pour en étudier la performance acoustique. Une analyse des principales méthodes de simulation numérique, de mesure et d’optimisation des protections antibruit a permis de choisir les méthodes adaptées à notre problématique des écrans acoustiques utilisant des moyens naturels. Les méthodes choisies ont été utilisées dans ce travail pour évaluer la performance acoustique de ces écrans innovants. Pour le premier écran choisi, dit écran en gabions, nous avons effectué des mesures in-situ et sur modèles réduits, ainsi que des simulations numériques montrant une efficacité satisfaisante. Pour le deuxième écran, utilisant des cristaux soniques, et pour le troisième écran, de type merlon acoustique de forme complexe, nous avons réalisé une étude numérique paramétrique suivie d’une étude d’optimisation. Les résultats des calculs ont montré l’intérêt de tels dispositifs antibruit pour réduire le bruit de circulation routière et ferroviaire en milieu urbain et ils ont abouti à des formes améliorées des protections acoustiques utilisant des moyens naturels. / Noise due to ground transportation infrastructures is among the first environmental concerns of this beginning of 21th century. Building noise protections along motorways and railways is usually the chosen solution to reduce this noise. Currently, noise abatement systems used are mainly conventional ones: straight barriers, earth berms, tilted barriers, capped barriers. The purpose of this work is to propose innovative noise barriers using natural means and to study their acoustic performance by using numerical and experimental approaches. The numerical approach can also be coupled with an optimization tool, developed in this thesis, to obtain improved shapes of such devices using natural means. First, the main phenomena that appear during acoustic wave propagation in a complex outdoor medium are described. Then, a state of the art of the main noise barriers dedicated to ground transportation noise is achieved. It drives the choice of three innovative noise barriers using natural means. An analysis of the main numerical, experimental and optimization methods is carried out which allows to choose the methods adapted to our problem of noise barriers using natural means. The chosen methods are used in this work to assess the acoustic performance of the three innovative noise barriers. For the first chosen noise barrier called “gabions barrier”, we perform in-situ and scale model measurements and numerical simulations. The results show a satisfactory efficiency of such noise devices. For the second and the third chosen noise barriers called respectively “sonic crystal assisted barrier” and “complex shaped earth berm”, we perform a parametric numerical and an optimization studies. The results show the capacity of such noise devices to reduce motorways and railways noises in urban areas and they lead to improved shapes of innovative noise barriers using natural means.

Page generated in 0.1516 seconds