Spelling suggestions: "subject:"groupe dde réflexion find"" "subject:"groupe dde réflexion fine""
1 |
Construction of graphene, nanotubes and polytopes using finite reflection groupsGrabowiecka, Zofia 10 1900 (has links)
Le but de cette thèse est d’étudier les structures obtenues à partir des groupes de réflexion
finis. Ce travail consiste en quatre articles publiés, un article soumis et un article en préparation
dont les résultats partiels constituent un chapitre de cette thèse.
Dans le premier article, nous présentons une réduction des orbites des groupes de Coxeter
finis vers leurs sous-groupes. Nous utilisons des matrices de projection, c’est-à-dire, des
applications qui transforment les racines simples d’un groupe de réflexion en les racines
simples du sous-groupe associé. Les résultats présentés dans ce papier se concentrent sur
les groupes finis de réflexion non crystallographiques. De plus, nous utilisons les polytopes
engendrés par le groupe non crystallographique H3 pour illustrer les lois de ramification
(branching rules), c’est-à-dire une réduction des orbites des groupes finis de Coxeter.
Dans le deuxième article, nous étudions les polytopes avec 60 sommets engendrés par le
groupe non crystallographique H3. Nous utilisons la méthode de décoration des diagrammes
de Coxeter–Dynkin pour décrire leurs structures en détails et décomposer les sommets
en somme des orbits de symétries de dimension inférieure. Le troisième article compare
deux notations utilisées pour décrire le polyèdre engendré par le groupe de réflexion. Il
s’agit du symbole de Schläfli et de la notation des points dominants. Nous y présentons
les avantages de chaque méthode, expliquons les deux approches et nous les illustrons
par des exemples. Dans le quatrième article, nous nous concentrons sur le graphène,
c’est-à-dire un pavement d’hexagones sur le plan, qui possède de remarquables propriétés
quand les sommets sont modélisés par des atomes de carbone. Dans ce travail, nous
présentons différentes méthodes pour obtenir du graphène à partir de réseaux (lattices)
et des orbites de dimension 3 des groupes finis de réflexion. De plus, une technique de
coloriage des hexagones au moyen d’un nombre fini de couleurs est donnée avec une méthode
systématique pour raffiner le graphène. Dans le cinquième article, nous utilisons des
v
fonctions spéciales et les transformations de Fourier pour traiter les données échantillonnées
sur un réseau de carrés du groupe de Lie SU(2)×SU(2), relié au groupe de symétrie A1×A1. / The goal of this thesis is to study structures obtained from finite reflection groups. The work
is contained in four published papers, one submitted article and a research paper currently
in preparation, with partial results presented as a chapter of this thesis.
In the first article, we present a reduction of the orbits of finite Coxeter groups to their
subgroups. We use projection matrices, that is, mappings that transform the simple
roots of a reflection group to the simple roots of the appropriate subgroup. The results
presented in this paper focus on non-crystallographic finite reflection groups. Moreover, we
use polytopes generated by the non-crystallographic group H3 to illustrate the obtained
branching rules, i.e., reductions of orbits of the finite Coxeter groups. In the second article,
we study polytopes with 60 vertices, generated by the non-crystallographic group H3. We
use a method of decoration of the Coxeter–Dynkin diagram to describe their structure in
detail, and decompose their vertices into sums of orbits of lower-dimensional symmetries.
The third article compares two notations used to describe polyhedra generated by reflection
groups, namely the Schläfli symbol, and the dominant point notation. Here, we present
the advantages of each method, we explain the two approaches, and we illustrate them
through examples. In the fourth article, we focus on graphene, i.e., a hexagonal tiling of
the plane that possesses remarkable properties when the vertices are modelled with carbon
atoms. In this work, we present different methods to obtain graphene from lattices and
three-dimensional orbits of finite reflection groups. Moreover, a technique to colour the
hexagons by a finite number of colours is provided, along with a systematic method to refine
the graphene. In the fifth article, we use special functions and Fourier transforms to process
data sampled on a square lattice of the Lie group SU(2) × SU(2), related to the A1 × A1
symmetry group.
|
Page generated in 0.074 seconds