Spelling suggestions: "subject:"groupes quantique compact"" "subject:"groupes quantique compacta""
1 |
Le produit en couronne libre d'un groupe quantique compact par un groupe quantique d'automorphismes / The free wreath product of a compact quantum group by a quantum automorphism groupPittau, Lorenzo 15 October 2015 (has links)
Dans cette thèse on définit et étudie le produit en couronne libre d'un groupe quantique compact par un groupe quantique d'automorphismes, en généralisant la notion de produit en couronne libre par le groupe quantique symétrique introduit par Bichon.Notre recherche est divisée en deux parties. Dans la première, on définit le produit en couronne libre d'un groupe discret par un groupe quantique d'automorphismes. Ensuite, on montre comment décrire les entrelaceurs de ce nouveau objet à l'aide de partitions non-croisées et décorées; à partir de cela et grâce à un résultat de Lemeux, on déduise les représentations irréductibles et les règles de fusion. Ensuite, on prouve des propriétés des algèbres d'opérateurs associées à ce groupe quantique compact, comme la simplicité de la C*-algèbre réduite et la propriété d'Haagerup de l'algèbre de von Neumann.La deuxième partie est une généralisation de la première. D'abord, on définit la notion de produit en couronne libre d'un groupe quantique compact par un groupe quantique d'automorphismes. Après, on généralise la description des espaces des entrelaceurs donnée dans le cas discret et, en adaptant un résultat d'équivalence monoïdale de Lemeux et Tarrago, on trouve les représentations irréductibles et les règles de fusion. Ensuite, on montre des propriétés de stabilité de l'opération de produit en couronne libre. En particulier, on prouve sous quelles conditions deux produits en couronne libres sont monoïdalment équivalents ou ont le semi-anneau de fusion isomorphe. Enfin, on démontre certaines propriétés algébriques et analytiques du groupe quantique duale et des algèbres d'opérateurs associées à un produit en couronne. Comme dernier résultat, on prouve que le produit en couronne de deux groupes quantiques d'automorphismes est isomorphe à un quotient d'un particulier groupe quantique d'automorphismes. / In this thesis, we define and study the free wreath product of a compact quantum group by a quantum automorphism group and, in this way, we generalize the previous notion of free wreath product by the quantum symmetric group introduced by Bichon.Our investigation is divided into two part. In the first, we define the free wreath product of a discrete group by a quantum automorphism group. We show how to describe its intertwiners by making use of decorated noncrossing partitions and from this, thanks to a result of Lemeux, we deduce the irreducible representations and the fusion rules. Then, we prove some properties of the operator algebras associated to this compact quantum group, such as the simplicity of the reduced C*-algebra and the Haagerup property of the von Neumann algebra.The second part is a generalization of the first one. We start by defining the notion of free wreath product of a compact quantum group by a quantum automorphism group. We generalize the description of the spaces of the intertwiners obtained in the discrete case and, by adapting a monoidal equivalence result of Lemeux and Tarrago, we find the irreducible representations and the fusion rules. Then, we prove some stability properties of the free wreath product operation. In particular, we find under which conditions two free wreath products are monoidally equivalent or have isomorphic fusion semirings. We also establish some analytic and algebraic properties of the dual quantum group and of the operator algebras associated to a free wreath product. As a last result, we prove that the free wreath product of two quantum automorphism groups can be seen as the quotient of a suitable quantum automorphism group.
|
2 |
Some problems in harmonic analysis on quantum groups / Quelques problèmes en analyse harmonique sur les groupes quantiquesWang, Simeng 22 June 2016 (has links)
Cette thèse étudie quelques problèmes d’analyse harmonique sur les groupes quantiques compacts. Elle consiste en trois parties. La première partie présente la théorie Lp élémentaire des transformées de Fourier, les convolutions et les multiplicateurs sur les groupes quantiques compacts, y compris la théorie de Hausdorff-Young et les inégalités de Young.Dans la seconde partie, nous caractérisons les opérateurs de convolution positifs sur un groupe quantique fini qui envoient Lp dans L2, et donnons aussi quelques constructions sur les groupes quantiques compacts infinis. La méthode pour étudier les états non-dégénérés fournit une formule générale pour calculer les états idempotents associés aux images deHopf, qui généralise un travail de Banica, Franz et Skalski. La troisième partie est consacrée à l’étude des ensembles de Sidon, des ensembles _(p) et des notions associées pour les groupes quantiques compacts. Nous établissons différentes caractérisations des ensembles de Sidon, et en particulier nous démontrons que tout ensemble de Sidon est un ensemble de Sidon fort au sens de Picardello. Nous donnons quelques liens entre les ensembles de Sidon, les ensembles _(p) et les lacunarités pour les multiplicateurs de Fourier sur Lp, généralisant un travail de Blendek et Michali˘cek. Nous démontrons aussi l’existence des ensembles de type _(p) pour les systèmes orthogonaux dans les espaces Lp non commutatifs, et déduisons les propriétés correspondantes pour les groupes quantiques compacts. Nous considérons aussi les ensembles de Sidon centraux, et nous prouvons que les groupes quantiques compacts ayant les mêmes règles de fusion et les mêmes fonctions de dimension ont des ensemble de Sidon centraux identiques. Quelques exemples sont aussi étudiés dans cette thèse. Les travaux présentés dans cette thèse se basent sur deux articles de l’auteur. Le premier s’intitule “Lp-improving convolution operators on finite quantum groups” et a été accepté pour publication dans Indiana University Mathematics Journal, et le deuxième est un travail intitulé “Lacunary Fourier series for compact quantum groups” et a été publié en ligne dans Communications in Mathematical Physics. / This thesis studies some problems in the theory of harmonic analysis on compact quantum groups. It consists of three parts. The first part presents some elementary Lp theory of Fourier transforms, convolutions and multipliers on compact quantum groups, including the Hausdorff-Young theory and Young’s inequalities. In the second part, we characterize positive convolution operators on a finite quantum group G which are Lp-improving, and also give some constructions on infinite compact quantum groups. The methods for ondegeneratestates yield a general formula for computing idempotent states associated to Hopf images, which generalizes earlier work of Banica, Franz and Skalski. The third part is devoted to the study of Sidon sets, _(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, _(p)-sets and lacunarities for Lp-Fourier multipliers, generalizing a previous work by Blendek and Michali˘cek. We also prove the existence of _(p)-sets for orthogonal systems in noncommutative Lp-spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included. The thesis is principally based on two works by the author, entitled “Lp-improvingconvolution operators on finite quantum groups” and “Lacunary Fourier series for compact quantum groups”, which have been accepted for publication in Indiana University Mathematics Journal and Communications in Mathematical Physics respectively.
|
Page generated in 0.0996 seconds